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ABSTRACT 

Interest in digital imaging has grown tremendously in recent years. As a result, various 

data compression techniques have been proposed, which are mainly concerned with 

minimizing the information used to represent images. Among them, JPEG compression 

is one of the most common techniques that has been widely used in multimedia and digital 

applications. There are several transformations that can determine the frequency of 

images, including the Discrete Fourier Transform (DFT), Discrete Wavelet Transform 

(DWT), and Discrete Cosine Transform (DCT). From its early discovery, DFT has been 

used in image processing and compression. It converts a spatial image to a frequency 

image. Due to the periodic nature of DFT, it is impossible to meet the periodic condition 

of opposite borders of an image causing severe artifacts, resulting in a decreased 

perceptual visual quality image. On the other hand, deep learning has produced 

remarkable results for tasks such as natural language processing, visual recognition, 

image compression, and speech recognition in recent years. Convolutional Neural 

Networks (CNN) have been studied more extensively than most other types of deep 

neural networks. The use of convolution in feature extraction reduces the size of the 

dataset and produces a less redundant feature map, which is an important part of image 

compression. This dissertation begins with the discussion of DFT in relation to image 

compression, discusses the problem causing a discontinuity in an image during 

compression, and then proposed a model based on a literature review and identified 

factors. The proposed model is then implemented, and the results are measured. The study 

results indicated several significant findings that suggested CNN can achieve good 

compression with better reconstruction. The results also shows that the proposed model 

outperformed the JPEG compression using DFT and has provided ample of room for 

improvements. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

In today’s digital era, human beings are surrounded by digital gadgets. Photographs are 

now an integral part of a person’s daily life, and digital images are widely used in a variety 

of applications. With the increase in megapixels of digital cameras, more memory and 

bandwidth are required for storing and transmitting digital images (Goel & Gabarda, 

2016). As digital imaging and multimedia services advance, more and more people can 

share their data on the Internet. The number of internet users is growing day by day 

rapidly (Rahman et al., 2018), resulting in increased data transfer, which necessitates 

efficient image compression. 

Images can be compressed in two ways: lossy and lossless (Wang et al., 2021). Lossy 

image compression techniques are non-reversible and can achieve a higher compression 

ratio whereas lossless methods provide the best visual experience. In multimedia, JPEG 

is one of the most used lossy compression techniques (Hussain et al., 2020). There are 

several variations of JPEG: JPEG 2000, JPEG XS, JPEG Systems, JPEG Pleno, and JPEG 

XL (SMPTE, 2020). Based on the data provided by Web Technology Survey, 74.3% of 

websites use the JPEG image format (W3Techs, 2022). In digital images, pixels have 

high correlations, and the removal of this correlation will not affect the visual quality of 

the image (Gonzalez et al., 2009; Yuan & Hu, 2019). To achieve the best quality with the 

smallest possible size, the low frequency values are preserved as they define the content 

of the image, and the high frequency values are truncated by a certain amount (Li & Lo, 

2019; Rasheed et al., 2020). Discrete Fourier Transform (DFT) has been used for image 

processing and compression since its discovery due to its good performance (Rasheed et 

al., 2020). 

DFT has been used in many of the applications such as Orthogonal Frequency 

Division Multiplexing (OFDM) systems (Kudeshia & Potnis, 2017), texture synthesis 

(Abraham et al., 2005), big data analysis (Giannakis et al., 2014), spectral analysis (De 

Carvalho et al., 2014), image registration (Tzimiropoulos et al., 2010), super resolution 
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(Tian & Ma, 2011), image denoising (Shui, 2009), audio processing (Malvar, 1999) and 

object tracking (Annoni & Forster, 2012; Naftel & Khalid, 2006). 

With the help of DFT, images in the spatial domain can be converted into the 

frequency domain, and certain frequencies can be ignored or modified to produce a low-

information image with adequate quality (Siddeq & Rodrigues, 2014a; Siddeq & 

Rodrigues, 2014b; Siddeq & Al-Khafaji, 2013).  

In practical application, when we compute the DFT of an image, it is impossible to 

meet the periodic condition that opposite borders of an image are alike, and the image 

always shows strong discontinuities across the frame border. As a result, this affects the 

registration accuracy and success rate and requires (Dong et al., 2019). To solve this 

problem, various approaches have been taken. Among them, raised-cosine window 

(Leprince et al., 2007), blackman window (Podder et al., 2014), and flap-top window (Ge 

et al., 2014) are the most popular ones. While these solutions are promising, still some 

information is lost in the process. Furthermore, other techniques have used neural 

networks. 

1.2 PROBLEM STATEMENT 

When computing the DFT of an image, the image is assumed to be periodic. It is 

unreasonable to assume that the opposite border will be similar in all circumstances, so 

the assumption of a periodic image will produce strong discontinuities across the border 

(Dong et al., 2019). Moreover, the discontinuities give rise to blocking and ringing 

artifacts in the Fourier Transform, specifically the cross structure of high energy 

coefficients along the axes and is referred to as the image border effect. The original 

image and the compressed image, together with magnified views, are shown in Figure 

1.1. The strong discontinuity at the border can be seen in Figure 1.1(b). 
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(a) Original image with a magnified view 

 

(b) Compressed image with a magnified view 

Figure 1.1: Original and Compressed image after DFT with respective magnified view 

The most commonly used approach for measuring the effect of the border of the 

image is to weight the reference and sensed images separately using a window function 

in the spatial domain. Furthermore, the operation of the weighting window function can 

cause additional problems, such as reducing the amount of common and useful 

information for the registration of image pairs based on phase correlation, especially in 
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cases of small patch-based matching or small overlaps between image pairs (Dong et al., 

2019). 

 

1.3 PURPOSE OF THE STUDY 

This research aims to develop an effective JPEG image compression technique to 

minimize construction loss. Different techniques will be analyzed based on the state of 

the art, and their appropriateness will be determined to produce an effective image 

compression algorithm. 

Due to DFT’s periodic nature, it is unlikely that the opposite borders of an image are 

always identical. As a result, artifacts are created, and the quality of the image is reduced. 

Using convolution, it is possible to reduce the dimensions of data and produce a less 

redundant data set. Features extraction, highly accurate recognition results and the 

possibility of retaining existing networks makes Convolutional Neural Network (CNN) 

more popular. Based on the current state of art, this research aims to reduce the 

construction loss that happens during image compression by purposing an effective 

compression technique. 

1.4 OBJECTIVES OF THE STUDY 

The objectives of this research are as follows: 

• To investigate the features that causes the construction losses. 

• To design and develop a more efficient JPEG image compression method in order 

to reduce construction loss. 

• To evaluate the performance of the developed method using state of art quality 

metrics. 

1.5 SIGNIFICANCE OF THE STUDY 

In the modern digital age, image compression techniques are essential to improve the 

performance of images and videos on the internet and in multimedia, including storage 

space, bandwidth usage, and secure transmission. A wide range of image compression is 

available, each with different compression ratios and levels of coding complexity. Among 
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them, JPEG compression is one of the most popular lossy image compression methods, 

which trades off file size with image quality. 

 

The DFT algorithm produces a complex number that requires a lot of storage for 

JPEG compression, and it produces discontinuities in the pixels around the edges, making 

it less efficient than other compression methods. Minimizing this problem with a 

promising result will result in a better-quality image. Standards can also be formulated 

using existing research and use the resulting model for further research. 

1.6 SCOPE OF THE STUDY 

While there are several compression standards for JPEG, including JPEG, JPEG-LS, and 

JPEG-2000, this study only addresses JPEG since it is the most used image compression 

in multimedia applications (Hussain et al., 2020; W3Techs, 2022), and focuses on the 

discontinuity across the border problem, due to reconstruction loss of DFT, which has 

demonstrated promising results with recent advances in image processing and 

computational power (Cavigelli et al., 2015; Hussain et al., 2020; Maleki et al., 2018; 

Mao et al., 2016). 

1.7 STRUCTURE OF THE THESIS 

This chapter provides information about JPEG, DFT, and highlights the need for 

compression in digital media. It later describes the discontinuity caused by the DFT in 

the problem statement and advocates the need for this research. The purpose of this 

research, its objectives, and its significance along with its scope are described in 

respective sections of Chapter 1. 

Chapter 2 gives more in-depth knowledge about the DFT’s border effect problem in 

relation to JPEG compression, JPEG variations, DFT, Deep learning, CNN, and 

highlights various types of CNN Architectures. Optimization Algorithms and the concept 

of Generalization, Overfitting and Underfitting is also introduced here. Later, it describes 

the relevant work in the field of JPEG compression using neural networks and points out 

the previous works. 
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Chapter 3 explains the research methodology that is applied in this research. It is 

further decomposed into the research framework, research plan, and summary section to 

conclude this chapter. Data collection and pre-processing, model development and 

testing, and performance evaluation are described in the research framework section of 

this chapter. The research plan is set up here to accomplish the research. 

 

Chapter 4 discusses the implementation of the proposed method. Here, the actual 

development of the model happens. It is then followed by testing where the performance 

of the proposed method is tested along with the reconstructed image quality using 

different state of art quality metrics. 

Chapter 5 discusses the results obtained from model testing. Here, the performance 

of the model along with the quality of the reconstructed result is also measured. 

Chapter 6 summarizes this dissertation with a discussion and conclusion. 

Conclusions are driven from the evaluation of proposed method. Contribution of this 

study and future recommendations are also discussed here.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

In order to gain exposure with regards to the different aspects of the existing problem of 

border effects in JPEG compression, a detailed study is conducted. The existing solutions 

and proposed methods are explored, compared by various aspects. 

In this chapter, the background to JPEG compression as well as JPEG variations are 

examined, followed by a discussion of the border effect problems in JPEG image 

compression. It then compares the different solutions based on the window functions and 

also lists the neural network solutions. Additionally, the usage of CNN, and performance 

indicators are discussed. This chapter summarizes previous works and compares them 

with state-of-the-art performance. 

2.2 JPEG COMPRESSION 

JPEG is one of the most used compression techniques that has been widely accepted as 

a standard for lossy image compression (Kunwar, 2017). JPEG, JPEG-LS, and JPEG2000 

are some of the compression standards available for JPEG. The Joint Photographic 

Experts Group has developed two basic image compression algorithms (Wallace, 1991), 

one of which defines a combination of prediction method and entropy coding, and the 

other defines a hybrid compression method based on DCT (Rao & Ochoa-Dominguez, 

2019) and entropy coding. The first method is a lossless compression technique based on 

Differential Pulse Code Modulation (DPCM), while the second is a lossy compression 

technique and is mainly used because of its high compression ratio. 



 

8 

 

When compression occurs, the result is a tradeoff between storage size and image 

quality. Image quality can be compromised when distortions occur during the acquisition 

and processing of images. Noise, blurring, ringing, and compression artifacts are 

examples of distortion. The basic JPEG image compression technique is shown in Figure 

2.1. 

 

Figure 2.1: JPEG compression technique (Kunwar, 2018) 

2.2.1 JPEG Variations 

Multiple variations of the JPEG format are available in order to meet the ever-changing 

needs of the market, including 3D, lossless compression, and video formats. The 

variations of JPEG are described below. 

A. JPEG 2000: The JPEG 2000 format is a flexible format that includes a number of 

advantages over the standard JPEG format, including a choice of lossy or lossless 

compression, an improved compression process, and support for high dynamic 

range. This format can be also used for videos. 

B. JPEG XS: It is designed for low-latency, multiple encoding-decoding cycles and is 

best suited for professional video and IP transport, as well as virtual and augmented 

reality usage. With this process, uncompressed data is replaced with visually 

lossless compressed data in formats such as RGB/444, RGBA/4444, YCbCr 

444/422, YCbCrA 4444/42224, and YCbCr 420. 
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C. JPEG Systems: To ensure better interoperability between legacy and future JPEG 

standards, JPEG Systems defines the overall framework for future JPEG standards. 

Several recent additions have included extensions for privacy, security and 

intellectual property rights (IPR), a standard for 360-degree images, and a universal 

metadata box format (JUMBF). 

 

D. JPEG Pleno: The JPEG Pleno standard defines “imaging modalities”. These are 

light representations that provide 3D spatial representations for the likes of texture-

plus-depth, light field, and point cloud. The framework supports image 

manipulation, metadata, access and interaction. 

E. JPEG XL: It’s designed to replace the existing JPEG format with better quality 

images and higher compression. The advantage of JPEG XL is that it is backward 

compatible, which means that traditional JPEG decoders will be able to open the 

image, while newer JPEG XL decoders can access the embedded metadata to create 

a higher quality image. 

2.3    DISCRETE FOURIER TRANSFORM (DFT) 

DFT is a simplified Fourier transform and contains only a set of samples that is large 

enough to describe the spatial domain image. In DFT, discrete signals in the time domain 

are transformed into their discrete frequency domain representations (Sevgi,2014). It is 

because of this property that DFT is so important in the field of spectrum analysis. 

Number of frequencies corresponds to the number of pixels in the spatial domain image 

and are of the same size (Mathur & Mathur, 2012). The Fourier transform produces an 

output image weighted by complex numbers, which can be represented by two images, 

either the real and imaginary parts or magnitude and phase. In image processing, 

magnitude is often display as it contains most information about the geometric structure 

of the image in the spatial domain. 

  Magnitude and phase of the image are preserved after preprocessing in order to 

transform it back to the correct spatial domain. Comparing to spatial domain, Fourier 

domain image has a much larger range, and its values are usually calculated and stored 

in float values. The Fourier transform is used to access the geometric features of an image 
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in the spatial domain. By decomposing the image into its sinusoidal components in the 

Fourier domain, certain frequencies can be examined or processed, which affects the 

gemotric structure in space.  While implementing Fourier transformation, the image is 

shifted towards the center, farther the pixel value from a center, the higher its 

corresponding frequency. Fourier transform of an image (I) and its magnitude calculation 

result is show in Figure 2.2(a) and Figure 2.2(b) respectively. 

 

 

                        (a) Input image                              (b) Magnitude Calculation  

Figure 2.2: Input image and it’s magnitude calculation 

 

 Because of the large dynamic range, only the largest value in the center of the image is 

seen. All other values appear as black on the screen. A logarithmic operator is applied to 

the Fourier image instead, as shown in Figure 2.3. 

 

 

 Figure 2.3: Fourier magnitude after applying logarithmic operator  

 

Results shows image contains all frequencies, but their size becomes smaller at higher 

frequencies. The logarithmic operator amplifies low intensity pixel values while 

compressing high intensity values in a relatively small pixel area. Thus, if an image 
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contains important high-intensity information, using the logarithmic operator may result 

in information loss. Additionally, the transformed image shows us that the Fourier image 

has two dominant directions, one vertical and one horizontal. These were derived from 

patterns in the original image background. The phase of the Fourier transform of the same 

image is shown in Figure 2.4. 

 

 

 Figure 2.4: Phase of transformed image 

The value of each point determines the phase of the corresponding frequency. The vertical 

and horizontal lines in the magnitude image correspond to the patterns in the original 

image. The phase image does not provide much new information about the structure of 

the image in the spatial domain. Therefore, in the following examples, only the magnitude 

of the Fourier transform is demonstrated. Although this image has the same frequency 

(and number of frequencies) as the original input image, it has been distorted beyond 

recognition. A correct spatial image reconstruction depends on phase information. For N 

real numbers DFT is defined as: 

 

Inverse Discrete Fourier Transform maps c into f and is given by  

 

In a straightforward implementation, the computations of matrix-vector products require 

N2 multiplications. Before abandoning the phase image altogether, note the magnitude 

image is transformed using the inverse Fourier transform (and then histogram-equalized), 

the following result is obtained as shown in Figure 2.5. 
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 Figure 2.5: Image after Inverse Fourier Transform 

 

2.4 BORDER EFFECT PROBLEM 

Due to the implicit periodicity property of DFT and the fact that opposite borders on an 

image are not identical, images are always subject to a border effect when registering 

based on phase correlation. Various approaches have been proposed to solve this problem 

among them window functions and the deep learning are promising ones. 

2.4.1 Window Functions 

Window function reduces the impact of the edges of the image by using a center 

weighting method. Window functions should be smooth and continuous, allowing for 

better center selectivity, thus reducing interferences at the edges and preventing 

truncation errors. Various window functions are available to solve this problem. Among 

them, raised-cosine window, blackman window, and flap-top window are the most 

popular approaches (Dong et al., 2019). 

A. Blackman window: In signal processing, blackman window is one of the most 

commonly used function when using spectral analysis. The discontinuities across 

the image border are smoothed out for an image patch weighted by the blackman 

window, but a significant amount of signal is also degraded. The blackman window 

of N length has the following formula in one dimension (Lai, 2004): 

 

B. Raised-cosine window: Raised-cosine was also proposed to achieve a good balance 

between reducing the effects of image borders and retaining the information about 

the image. Here is the one-dimensional expression for the raised-cosine window of 

length N (Dong et al., 2019): 
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C. Flat-top window: It is an improved version of classical Hanning window, with 

involving parameters optimization in the process. A window function is added to 

the input images in the space domain and a weighting function to the spectrum in 

the frequency domain. 

The result of an image filtered by different window function is illustrated in Figure 2.6. 

These functions are progressively blurring the border of the image and preserving the 

content away from the image’s border. To avoid adding new discontinuous content to the 

images, some content near the border will be fuzzed to varying degrees. Each window 

function differs in how much information is processed near the image border. The three-

dimensional diagrams of blackman window function, raised-cosine window function and 

flap-top window function are shown in Figure 2.6(a-c) respectively. The length of all 

window functions is 100. For raised-cosine window function, its roll-off factor β is set to 

0.25. For the flap-top window function, its stretch factor k is set to 2.7. 

 

 

Figure 2.6: Three-dimensional diagrams of window functions (Dong et al., 2019). 
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The resulting images of image filtered by different window functions and the 

corresponding amplitude spectrum are shown in Figure 2.7. Here, the cross structure is 

clearly visible in the amplitude spectrum of the original image but disappears from the 

other three amplitude spectrums. The original image of its size 1000×1000 pixels is 

shown in Figure 2.7(a). The result images after filtering by Blackman, flap-top and raised-

cosine window function are shown in Figure 2.7(b–d) respectively. Figure 2.7(e–h) are 

the corresponding amplitude spectrum of Figure 2.7(a–d), respectively. 

 

 

Figure 2.7: The resulting images of image filtered by different window functions and 

the corresponding amplitude spectrum (Dong et al., 2019). 

The discontinuities across the image border are smoothed out for an image patch 

weighted by the blackman window, but a significant amount of signal is also degraded. 

In raised-cosine and flap-top, they blur the borders while keeping the middle of the 

image as unchanged as possible. Unfortunately, some contents near the border are also 

degraded. 

2.5 DEEP LEARNING 

Deep learning is a subset of machine learning and is designed in a way that mimics the 

human cerebral cortex. It has been applied to a variety of fields and proved their 

usefulness in many applications such as image classification (Ren et al., 2016), object 

recognition (Long et al., 2015), and semantic segmentation (Cavigelli et al., 2015). It has 
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also gained relevance for regression tasks in low-level image and video processing by 

computing saliency maps (Dosovitskiy et al., 2015), optical flow fields (Dong et al., 

2014), and single-frame super-resolution images (Poor, 1988) with state-of-the-art 

performance. 

Recursive Neural Network (RvNN), Recurrent Neural Network (RNN), CNN, Deep 

Generative Networks are some of the examples of deep learning networks (Pouyanfar et 

al., 2019). Among them, CNN is one of the most popular deep neural networks has gained 

more attention in the domain of computer vision, particularly for applications like 

detection and interpretation (Sujitha et al., 2021). As CNN have advanced rapidly, the 

problem of removing image artifacts from the decoded images has been re-examined. 

Several state-of-the-art deep learning-based algorithms have been developed with great 

success using this approach (Baig et al., 2017; Dong et al., 2019; Li, Wang, et al., 2020; 

Santurkar et al., 2017; Svoboda et al., 2016). 

Approaches like using the Hann windows for reducing edge-effects in patch-based 

image segmentation with CNNs has shown promising results and pointed out the further 

investigation with different window functions and with reducing the amount of context 

needed (Pielawski & Wählby, 2020). 

 

2.6 CONVOLUTIONAL NEURAL NETWORK (CNN) 

CNN is a deep learning algorithm that takes in an input image, assigns weights and biases 

to various aspects and objects in the image, and then differentiates them from each other. 

It consists of neurons that have learnable weights and biases. Each neuron receives some 

input, performs a dot product, and optionally follows it with a non-linearity (Kunwar, 

2018). CNNs are being increasingly used in image recognition and classification tasks, 

and have achieved great success (Krizhevsky et al., 2017). 

The use of CNNs for deep learning is popular due to three important factors: 

1. In CNN, features are learned directly from CNN, eliminating the need for manual 

feature extraction. 

2. It produces highly accurate recognition results. 
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3. It is possible to retrain CNNs for new recognition tasks, so existing networks can 

be expanded. 

 

Figure 2.8: CNN Architecture, comprised of just five layers (O’Shea & Nash, 2015) 

Figure 2.8 depicts the CNN architecture, comprised of five layers. Pixel values are 

stored in the input layers. The convolution layers compute the output of the neurons 

associated with local regions by computing the scalar product between the weights of the 

neurons and the region of the input volume. The Rectified Linear Unit (ReLU) adds an 

activation function to the previous layer’s output. Different layers of a CNN are described 

below: 

A. Convolutional layer: The convolutional layer consists of a set of learnable 

kernels/filters that perform convolution operations as they scan the input image 

according to its dimensions to produce an output called an activation map or a 

feature map. 

 

Figure 2.9: Visual representation of a convolutional layer. 
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As shown in Figure 2.9, the filter map value is connected to the receptive field, 

where the filter is being applied. The hyperparameters that affect the output size 

are Stride, Number of filters, and Zero-padding. 

• Stride: The distance that the kernel travels across the input matrix. A stride 

value of two or more is rare, but a larger stride results in a smaller output. 

• Number of filters: The number of filters affects the depth of the output, 

because each filter yields a different depth feature map. 

• Zero-padding: In most cases, it is used when the filters do not fit the input 

image. The elements that are outside of the input matrix in this case are set to 

zero, resulting in an output that is larger or the same size. Valid padding, Full 

padding and Same padding are three different types of padding that can be 

used. 

B. Pooling layer: A pooling layer reduces the number of parameters and computations 

in the network by progressively reducing the size of the representation. Each 

feature map is processed independently by the pooling layer. The function “MAX” 

maps the input and scales its dimensionality. Max-pooling is the most popular 

method of pooling. 

C. Fully connected layer: The neurons in the fully connected layer are directly 

connected to neurons in the two adjacent layers, without being connected to any of 

the layers within them. In traditional ANNs, neurons are arranged according to the 

way in which they are shown on Figure 2.10. 
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Figure 2.10: Simple three-layer feed forward neural network (FNN) consisting 

of an input layer, a hidden layer, and an output layer. (O’Shea & Nash, 2015) 

 

D. Activation Function: The activation functions map the input to the output in all 

types of neural network. A neural network’s performance depends heavily on the 

activation function it uses, and different activation functions may be used in 

different parts. Some of the most commonly used activation functions are shown 

in Figure 2.11. 

 

 (a) Sigmoid (b) Tanh (c) ReLU (d) Leaky ReLU 

Figure 2.11: Sigmoid, Tanh, ReLU and Leaky ReLU activation functions 

A linear activation function cannot perform backpropagation, while a nonlinear 

activation function can stack multiple layers of neurons into a deep neural network, 

that can learn complex data sets accurately and quickly. Some of the examples of 

non-linear activation functions are as follows: 
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• Sigmoid: This activation function takes real numbers as input and restricts the 

output to zero or one. Sigmoid function curves have an S-shaped shape and 

are mathematically represented by the equation below. 

 

• Tanh: Like the sigmoid function, it takes real numbers as input, but its outputs 

between −1 and 1. In mathematics, it is represented by following equation. 

 

• ReLU: ReLU is one of the most used functions in CNN. It generates positive 

numbers from the whole value inputs. The main benefit of ReLU to others is 

its low lower computational load. It is mathematically represented by the 

equation below. 

 f(x)ReLU = max (0, x) (2.7) 

There are cases where ReLU neurons become inactive and only output 0 for 

any input, creating dying ReLU problem (Lu, 2020). Different solutions have 

been put forward to solve this problem. 

• Leaky ReLU: ReLU downscales negative inputs, but this activation function 

ensures that these inputs are never ignored. It is used to solve the problem of 

Dying ReLUs. It is mathematically represented by the equation below. 

 
• Noisy ReLU: To make ReLU noisy, this function uses a Gaussian 

distribution. It is mathematically represented by the equation below. 

 

 f(x)NoisyReLU = max (x + Y), with Y ∼ N(0, σ(x)) (2.9) 
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• Parametric Linear Units: The main difference between this function and 

Leaky ReLU is that the leak factor in this function is updated during model 

training. It is mathematically represented by the equation below. 

 

E. Loss Functions: CNN architectures achieve final classification through the output 

layer, which represents the last layer. In the output layer, loss functions are used to 

calculate predicted errors created across the training samples. The error shows the 

difference between the actual and predicted outputs. Then, it will be optimized 

using CNN learning. Different problem types require different types of loss 

functions. 

Here are some concise explanations of loss function based on regression problems 

and classification problems. 

• Mean Absolute Error (MAE): It calculates the mean of the absolute error 

between the predicted value and the actual value. MAE results are not 

derivable, so the update rate cannot be estimated during optimization.

 

• Mean Squared Error (MSE): In CNN, regression problems are mostly dealt 

with MSE or MAE (Li, Yang, et al., 2020). MSE calculates the mean of 

square error of the predicted value and the actual value. It results are derivable 

and is possible to control the update rate. 
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• Cross-Entropy Function: In addition to being known as the log loss function, 

this function is commonly used to measure CNN model performance. It is 

mostly used for multi-class classification problems and the output is measured 

in probability p ∈ {0, 1} (Alzubaidi et al., 2021). For all classes in the 

problem, cross-entropy calculates the average difference between actual and 

predicted probability distributions (Brownlee, 2021). The mathematical 

representation of Cross-Entropy Function is given below. 

 

where: 

eai = non-normalized output from the preceding layer 

N = number of neurons in the output layer 

Cross entropy loss only considers the correctness of the classification, not 

compactness within a class or the margin between classes. To overcome these 

various approaches have been proposed such as Contrastive loss (Hadsell et 

al., 2006), triplet (Schroff et al., 2015), center loss (Wen et al., 2016), and 

large margin softmax loss (Liu et al., 2016). 

• Euclidean Loss Function: In regression problems, this function is widely 

used. Additionally, it is also known as the mean square error. The 

mathematical representation of Euclidean Loss Function is given below. 

  
 

• Hinge Loss Function: The hinge loss function is an alternative to cross-

entropy mostly used in binary classification problems, primarily designed for 

use with Support Vector Machines (SVMs) models. The maximum-margin-
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based classification problem occurs mostly with SVMs, which use hinge loss 

functions, where the optimizer tries to maximize margins around dual 

objective classes. It is mathematically represented by the equation below. 

 

where: 

pi = predicted output 

m = margin 

yi = desired output 

2.6.1 Types of CNN Architecture 

CNN architectures have evolved over time in different ways (Khan et al., 2020). It has 

undergone various modifications, such as structural reformulation, regularization, and 

parameter optimization. However, it’s performance improvement has been primarily 

attributed to the restructuring of processing units and the development of new blocks 

(Alzubaidi et al., 2021). Different types of CNN architecture are available based on the 

architectural modification. Some of them are discussed below: 

 

A. AlexNet: In 1998, LeNet became the first CNN architecture to be released (LeCun 

et al., 1995). It was developed to recognise hand-written digits from the MNIST 

Dataset. Later, AlexNet was proposed that achieve impressive results in terms of 

classification and image recognition (Krizhevsky et al., 2012b). AlexNet, uses 

more filters than LeNet, allowing it to categorise a much wider range of objects. 

In AlexNet, there are 5 convolutional layers, including a max-pooling layer, 3 fully 

connected layers, and 2 dropout layers. To address overfitting, “dropout” was used 

instead of regularization. All layers use Rectified Linear Unit (ReLU) as their 

activation function except the output layer, which uses the Softmax activation 

function. Figure 2.12 shows the AlexNet Architecture. 
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Figure 2.12: AlexNet Architecture (Krizhevsky et al., 2012a) 

B. ResNet: ResNet (Residual Network) was developed by (He et al., 2015) with the 

objective to design an ultra-deep network free of the vanishing gradient issue, as 

compared to the previous networks. ResNets are made up of residual block. This is 

built on the concept of “skip-connections” and uses heavy batch-normalization to 

effectively train hundreds of layers without sacrificing speed. Figure 2.13 shows 

the residual block. 

 

Figure 2.13: Residual learning: a building block (He et al., 2015) 

With the idea of not having more mistakes than the shallower equivalents, skip 

connections were introduced (Shrivastav, 2021). The creator used a pre-activation 
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variation of the residual block so gradients can flow through the shortcut link to the 

earlier layers, minimizing the vanishing gradient problem. 

C. Visual Geometry Group (VGG): It is a simple and efficient design principle for 

CNN was proposed by Simonyan and Zisserman after CNN proved effective in 

image recognition. It’s a multilayer model that has nineteen more layers than ZFNet 

(Zeiler & Fergus, 2014) and AlexNet (Rozenwald et al., 2020) to replicate the 

relationship between depth and network representational capability. Figure 2.14 

shows the architecture of VGG. 

 

 

Figure 2.14: Architecture of VGG (Alzubaidi et al., 2021) 

VGG showed that the filters with small sizes when assigned parallel enhances the 

CNN performance (Simonyan& Zisserman, 2014). With the decrease in the 

number of parameters, small-size filters reduced the computational complexity. As 

a result of these results, a novel research trend for CNN has emerged related to 

small-size filters. 

D. Xception: The main characteristic of Xception is the extreme inception architecture 

(Chollet, 2017). With the idea of depth wise separable convolution Xception was 

created. By increasing the size of the original inception block, Xception replaced 

the multiple spatial dimensions (1x1, 5x5, 3x3) with one dimension (3x3) followed 

by a convolution of 1x1. Through the separation of spatial and feature-map 

correlation, Xception improves the network’s computational efficiency. Figure 

2.15 depicts the Xception block’s architecture. 
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 Figure 2.15: Block diagram of Xception block architecture (Alzubaidi et al., 2021) 

The transformation technique used by Xception does not reduce the number of 

parameters, but it makes learning more efficient and leads to better performance 

(Lo et al., 2019). 

E. ZFNet: ZFNet is a multilayer Deconvolutional NN introduced by Zeiler and Fergus 

in 2013 (Zeiler & Fergus, 2013). ZFNet visualizes network performance 

statistically. Through the analysis of neuron activation, the network activity 

visualization tracked CNN performance. 

Five shared convolutional layers, max-pooling layers, dropout layers, and three 

fully connected layers comprise its architecture. As part of the first layer, it used a 

77 size filter and a low stride value. The last layer of the ZFNet is the softmax layer. 

 

 

Figure 2.16: ZFNet architecture (Zeiler & Fergus, 2013) 
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F. DenseNet: DenseNet was proposed to overcome the vanishing gradient problem in 

high-level network (Huang et al., 2016). It’s works in similar manner as Highway 

Networks and ResNet. ResNet retains information explicitly through additive 

identity transformation, which may result in many layers providing very little or no 

information. To solve this problem, DenseNet uses a modified form of cross-layer 

connection. With a feed-forward approach, DenseNet connects each layer to the 

next. 

 

Figure 2.17: A 5-layer dense block with a growth rate of k = 4. Each layer takes 

all preceding feature-maps as input (Huang et al., 2016) 

 

G. GoogleNet: With the aim of achieving high-level accuracy and decreased 

computational cost, GoogleNet (also known as Inception-V1) architecture was 

created and won the 2014-ILSVRC competition (Szegedy et al., 2014). It uses a 

new inception block (module) that combines all the multiple-scale convolutional 

transformations for feature extraction. Figure 2.18 shows the basic architecture of 

GoogleNet. 
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Figure 2.18: Basic architecture of GoogleNet block (Alzubaidi et al., 2021) 

 

Filters of different sizes are incorporated together in this architecture to capture 

channel information along with spatial information at diverse ranges of spatial 

resolution. GoogleNet used sparse connections to overcome the redundant 

information problem and reduces cost by ignoring irrelevant channels.  

2.6.2 Optimization Algorithms 

Optimization is an integral part of machine learning. Most machine learning algorithms 

build an optimization model and learn parameters from the data (Sun et al., 2019). 

Machine learning models are widely used and popularized because of the effectiveness 

and efficiency of numerical optimization algorithms. A series of effective optimization 

methods were proposed to promote machine learning, which has improved machine 

learning’s performance and efficiency (Hosseini et al., 2021; Nanni et al., 2021; Seyyarer 

et al., 2019). Some of the most commonly used optimization algorithms are described 

below: 

A. Adam: Adam (Adaptive Moment Estimation) is an optimizer that uses momentum 

and adaptive gradient to compute adaptive learning rates for each parameter 

(Kingma & Ba, 2014). Using exponential moving averages of the gradient and its 

square, it updates based on the gradient value at the current step. An exponentially 

moving average of past gradients is stored by Adam (mt) and squared gradients 

(vt). 
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β1 and β2 are hyper-parameters governing the decay rates. At the beginning of 

training, the moving averages are initialed as 0’s, skewing the estimates of first and 

second moments towards zero. To counteract this, Adam utilizes correction terms  

 

          Then, the updated adam rule 

       

 
Several variants of Adam are available including AdaMax, NAdam and AMSGrad 

(He et al., 2021). Adam algorithms failed to converge in convex example (Reddi et 

al., 2018). 

B. Stochastic Gradient Descent: Gradient Descent (GD) calculates the gradients using 

all training samples whereas Stochastic Gradient Descent (SGD) performs one 

weights update for each training sample. In gradient descent converging to a local 

minimum takes extensive time, and determining a global minimum is not always 

possible. Which has been addressed in SGD. 

 x = x − η∇l(x,s) (2.19) 

It is faster than gradient descent, but gradients calculated from just one sample are 

not representative enough of the whole training dataset (Johnson & Zhang, 2013; 

Nanni et al., 2021). As a result, gradient variance causes the loss function to 

fluctuate intensely. 
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C. Momentum: In the loss function surface, SGD has difficulty navigating long, 

narrow valleys, in which the gradient is almost perpendicular to the long axis of the 

valley. Such a situation causes the system to oscillate back and forth in the short 

axis, while moving very slowly along the long axis. 

Momentum strategy helps to counteract oscillation along the short axis by 

accumulating contributions along the long axis (Qian, 1999). It strengthens when 

gradients point in the same direction and dampens when gradients change, reducing 

the training loss in fewer steps than full batch gradient descent. By adding the 

previous update to the current update, momentum SGD determines the next update 

(vt) as a linear combination of the gradient and the previous update (mt−1): 

 

vt = βvt−1 − η∇l(x) 

(2.20) 

x = x − vt 

 

2.6.3 Generalization, Overfitting, and Underfitting 

Generalization refers to the model’s ability to estimate unseen test data (out-of-sample). 

In machine learning, the goal is generalization so that predictions can be made about 

future data and unseen data. Both overfitting and underfitting are caused by the lack of 

generalization. 

Overfitting occurs when a model is trained so simply that its estimation has low 

variance and high bias. Models that are overfitted learn concepts from noise and fit closely 

to the training data, leading to poor performance on new data. Low error rates and a high 

variance are good indicators of overfitting. A “test set” of the training dataset is typically 

set aside to prevent overfitting. The concept of underfitting refers to models that cannot 

be generalized to new data or model the training data. A machine learning model that is 

underfit is not suitable for training data and will result in poor performance. 
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Figure 2.19: Underfitting, overfitting and good fitting examples (Kiourt et al., 

2020) 

2.7 RELATED WORKS 

In an effort to eliminate the discontinuities across borders, various research methods have 

been developed. These methods often incorporate deep learning techniques and are 

summarized here. 

Dong et al. presented an approach to eliminate the effect of image border, namely 

decomposing the image into two images: one being the periodic image and the other the 

smooth image. According to the study, when Fourier Transform is applied to an original 

image, the periodic image replaces it without affecting the image border, and in some 

circumstances, removing the image border can improve the success rate and accuracy of 

phase correlation-based image registration (Dong et al., 2019). 

Puchala & Stokfiszewski proposed a structure of CNN for lossy compression of 

images intended as an extension of JPEG image compression standard where they were 

using high-quality human face images to train the CNN model and compared it with other 

methods such as discrete cosine transform, lobed orthogonal transform, modulated lobed 

transform, and Karhunen-Loeve transform, which also appear in the JPEG standard. Their 
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proposed model showed slightly better image quality and also enabled significant 

reduction of the blocking defects (Puchala & Stokfiszewski, 2021). 

Using the recently developed Perodic Plus Smooth Decomposition Technique, 

Hoven et al. study shows that the edge discontinuities can be reliably removed through a 

simple efficient procedure. Edge artifacts are reduced by subtracting a smooth 

background based on boundary conditions set by the image’s edges. Periodic Plus Smooth 

Decomposition preserves sharp reciprocal lattice peaks across the entire image area 

unlike traditional windowed Fourier transforms (Hovden et al., 2015). 

Pielawski & Wählby introduced windowing methods from signal processing to 

effectively reduce edge-effects in patch-based image segmentation. Based on the 

assumption that the center of an image patch contains more contextual information than 

its sides and corners, they reconstruct the prediction by overlapping patches weighted 

according to 2-dimensional windows. Furthermore, they pointed out that by combining 

their proposed windowing method with any CNN model for segmentation, network 

predictions can be substantially improved without requiring additional modifications 

(Pielawski & Wählby, 2020). 

 

Rasheed et al. (2020) presented a method for compressing high-resolution images 

using DFTs and a Matrix Minimization algorithm (MM) where each component (real and 

imaginary component) is quantized independently to increase the number of high 

frequency coefficients. In the end, LFC and HFC matrices are recoded using the MM 

algorithm and arithmetic coding. Data is decoded in reverse order using a sequential 

search algorithm. A matrix is then built by combining all decoded LFC and HFC values, 

followed by an inverse DFT. Research shows that their method yielded high compression 

ratios over 98% for structured light images with good image reconstruction (Rasheed et 

al., 2020). 

Wan et al. (2020) developed training model named Feature consistency Training to 

minimize the distortions caused by the JPEG artifacts. With each iteration of the training 

model, raw images and their compressed versions of randomly sampled quality were 

added to the training process. As a result of adding feature consistency constraints to the 
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objective function, feature distortion in the representation space is minimized to learn 

robust filters (Wan et al., 2020). 

Yuan & Hu (Yuan & Hu, 2019) defined a bit rate that requires high performance on 

predictive tasks that are invariant under a set of transformations, such as data 

augmentation. Based on this, unsupervised objectives for training neural compressors are 

designed. A generic image compressor was developed that achieved large rate savings 

without reducing the quality of downstream classification (Dubois et al., 2022). 

A novel 12-layer deep convolutional network is presented with hierarchical skip 

algorithms for suppressing compression artifacts connections and a multi-scale loss 

function. The PSNR was improved by up to 1.79 dB over ordinary JPEG, and by up to 

0.36 dB over the previous best ConvNet result. It also found that the network trained for 

a specific quality factor (QF) is resilient to the QF used to compress the input image 

(Cavigelli et al., 2017). 

Model-based estimation techniques available to estimate the primary quantization 

matrix in double-compressed JPEG images work under specific conditions. A single CNN 

based estimation method was proposed that can be applied to a wide range of situations. 

By adapting a dense CNN network, the experimental results, the new method has several 

advantages, including: i) working under very general conditions, ii) improved 

performance in terms of MSE and accuracy when results are not aligned, iii) better spatial 

resolution due to being able to perform well even on small image patches (Niu et al., 

2020). 

2.8 COMPARISON OF PREVIOUS METHODS 

Several techniques have been developed using CNN to minimize the artifacts caused by 

JPEG compression along with the improvement in compression. The list of techniques 

that have shown promising results are listed below. 
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Table 2.1: Comparison of various CNN techniques to minimize JPEG artifacts 

 

Research Result and Discussion 

Zhang et al. (Zhang et al., 2017) trained a 

network to reduce Gaussian noise and this 

network does not require the level of noise. 

 

Their method not only produces 

desirable image denoising performance 

quantitatively and qualitatively, but also 

has a promising run time with GPU 

implementation. 

 

An appropriate investigation of CNN 

models for denoising of images with real 

complex noise and other general images 

restoration tasks should be conducted. 

 

Ballé et al. (Ballé et al., 2017) used a 

nonlinear analysis transformation, a 

uniform quantizer, and a nonlinear 

synthesis transformation to optimize image 

compression. 

 

The optimized method generally exhibits 

better rate-distortion performance than 

the standard JPEG and JPEG 2000 

compression methods. And dramatic 

improvement in visual quality for all 

images at all bit rates, which is supported 

by objective quality estimates using MS-

SSIM.  

 

Their method exhibits better rate-

distortion performance than both JPEG 

and JPEG 2000 for most (but not all) test 

images, especially at the lower bit rates. 
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Mao et al. (Mao et al., 2016) proposed a 

deep encoding and decoding framework 

for image restoration. Skip connections 

were introduced to recover clean images 

and to tackle optimization difficulty for 

better performance. 

 

Their proposed network achieves better 

performance than state of art methods on 

image noising and denoising. 

 

Further research can be conducted to 

explore the degradation of 

performance with different levels of 

corruption. 

Dong et al. (Dong et al., 2015) trained a 

network to reduce JPEG compression 

artifacts. 

 

Their method showed superior 

performance than the SA-DCT 

approach, both on the benchmark 

datasets and the real-world use case 

(i.e., Twitter).  

The research pointed out that the 

large filter size also helps to 

improve the performance and 

further research is needed. 

Maleki et al. (Maleki et al., 2018) proposed 

a BlockCNN that performs both artifact 

removal and image compression. 

 

The proposed algorithm performs better 

at low compression factors that don’t 

predict high-frequency details. 

 Research can be conducted to make it 

workable at higher bit rates. 
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Svoboda et al. (Svoboda et al., 2016) 

applied residual representation learning to 

define an easier task for the network with a 

combination of skip architecture, and 

symmetric weight initialization for artifacts 

reduction and better compression. 

 

The network was compared with 

three different objectives– direct 

mapping, residual learning, and edge-

preserving, and found out that 

residual learning provides the best 

reconstruction results. 

Further implementation can be 

conducted to other compression methods 

such as JPEG 2000, JPEG XR, or WebP 

and its performance. 

 

Li et al. (Li, Wang, et al., 2020) proposed a 

single model convolutional neural network 

for conducting image artifacts removal of 

then JPEG-decoded images. 

 

The proposed model was found to be 

beneficial to high-resolution image 

cases. 

 

The research was focused on JPEG 

compression with quality factors ranging 

from 1 to 60. 

 

Santurkar et al. (Santurkar et al., 2017) used 

Deep Generative models to reproduce and 

remove image and video artifacts. 

The research demonstrates that 

generative compression is orders-of-

magnitude more resilient to bit error rates 

(e.g., from noisy wireless channels) than 

traditional variable-length coding 

schemes. 

 

The large image compression through 

still needs further research as the 

advancement of GAN continues. 
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Cavigelli et al. (Cavigelli et al., 2017) 

presented a novel 12-layer deep 

convolutional network with hierarchical 

skip algorithms for suppressing 

compression artifacts connections and a 

multi-scale loss function. 

This result shows an improvement of up 

to 0.36 dB over the best previous 

ConvNet results with a PSNR of up to 

1.79 dB in comparison to ordinary JPEG. 

 

The proposed approach does not exceed 

the PSNR-B value achieved by the L8 

network for lower compression and 

requires further research. 

By using the residual blocks with skip 

connections, Alexandre et al. (Alexandre et 

al.) proposed a lossy image compression 

system using the deep learning autoencoder 

structure. 

The importance maps are generated by 

a separate neural net in the encoder, 

which is trained jointly by minimizing 

a weighted sum of mean squared errors, 

MS-SSIM, and a rate estimate. Despite 

outperforming JPEG significantly, the 

proposed model faces a performance 

gap relative to BPG suggesting ample 

room for improvement. Further 

research is needed on the impact of 

importance maps on subjective quality. 

 

2.9 SUMMARY 

Recent decades have seen a tremendous increase in interest in digital imaging. As a result, 

many data compression techniques have been proposed, which are aimed at minimizing 

the amount of information used to represent images. Image compression is becoming 

more effective thanks to the advances in deep neural networks. Encoders and decoders 

have become a major trend in the development of CNN architectures to improve 

performance. In Image Processing and Computer Vision, a variety of approaches have 

been used to solve the compression artifacts. Results are promising with regards to 

performance, quality, and compression ratio for each method. However, it remains to be 

seen if these three factors can be met simultaneously. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 INTRODUCTION 

This chapter provides the design of the proposed framework to solve the border effect 

problem along with the research framework. A research plan is also setup which acts as 

a guide to accomplish this task. 

3.2 RESEARCH FRAMEWORK 

The research framework that is used in this research consists of multiple phases where 

each phase’s output is an input to the next phase. Phase 1 is based on dataset collection 

and pre-processing. Phase 2 is about designing an efficient compression modal to reduce 

construction loss and is followed by Phase 3 where the developed model is evaluated 

using quality metrics: Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), 

and Structural Similarity Index (SSIM). These phases are depicted in Figure 3.1. 
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Figure 3.1: Research Framework 

3.2.1 Data Collection and Preprocessing 

There are many research organizations making data available on the web, and one of them 

is CIFAR-10 dataset which is most popular in computer vision tasks (DeVries & Taylor, 

2017; Shorten & Khoshgoftaar, 2019; Xie et al., 2016). It is a publicly available dataset 

that consists of 60000 32x32 colour images arranged in 10 classes of 6000 images each. 

This includes 50000 training images and 10000 test images. The datasets are divided into 

two sets: training and testing datasets. In CIFAR10, there are several challenges, as the 

images vary in size, position, pose, and illumination (Ho-Phuoc, 2018), requiring 

preprocessing.  
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Simple random sampling will be used to represent the different sets of images in this 

research as it gives an equal probability of selecting a particular item (Gupta, 2021). Here, 

samples are only taken from the training images, the dataset used to train the algorithm. 

As the method aims to evaluate itself using both real and representative data, no training 

is done on holdout tests (Yadav & Shukla, 2016). 

3.2.2 Model Development and Testing 

To reduce the construction loss associated with JPEG compression, a method is proposed. 

This method comprises different steps such as encoding the image through an auto 

encoder network, decoding it, and calculating reconstruction loss. The proposed method 

is depicted in Figure 3.2. 

 

Figure 3.2: Proposed Model Architecture 

Pre-processed data are fed into the CNN autoencoder neural network for the 

dimension reduction (Legrand et al., 2018). The projection to a lower dimensional space 

facilitates the identification of several hidden features (Bank et al., 2020). The encoders 

are trained along with the decoders without labels. Eight layers of convolution is used in 

the auto encoder network as it helps to reduce the computational costs and weight sharing. 

Batch Normalization is used to enable faster and more stable training of deep neural 

networks (Santurkar et al., 2018). The benefit of using a layer is, it allows similar 
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operations to be performed simultaneously. With more convolution kernels, the number 

of parameters increases linearly. As a result, the number of output channels also increases 

linearly and helps to reduce the artifacts caused by the gaussian noise (Audhkhasi et al., 

2016). The computation time is also proportional to the size of the input channel and to 

the number of kernels. 

Sigmoid activation function is used in the output layer, whose output is bound 

between 0 and 1 range, and can be prone to suffering from the vanishing gradient problem 

(Gustineli, 2022). To overcome this, ReLU is used as an activation function to increase 

to speed up the application and for better results (Dubey et al., 2021). Upsampling is also 

done to increase the spatial dimensions of the feature maps (Kundu et al., 2020). 

For error correction, regularization options (Steck & Garcia, 2021) are explored with 

the model. The reconstructed results are analyzed and compared to the proposed method 

in terms of loss value, which measures the difference between the reconstructed image 

and desired image. 

3.2.3 Quality Evaluation 

Image quality can be compromised as a result of distortions during the acquisition and 

processing of images. Different metrics have been used to measure the quality of 

compressed results, including Mean Square Error (MSE), Peak Signal to Noise Ratio 

(PSNR), and Structural Similarity Index (SSMI) (Deshmukh, 2019). Measures such as 

MSE and PSNR are easy to calculate and applicable in most cases, but they do not always 

correlate to perceived quality and are often not normalized in display. To solve this 

problem, SSIM and feature similarity indexing method (FSIM) have been developed 

(Sara et al., 2019). 

Different quality metrics such as MSE, PSNR and SSMI are used to test the quality 

of the reconstructed result. These metrics are discussed below. 

A. Mean Square Error (MSE) 

MSE is one of the most common image error metrics used to compare image 

compression quality. This metric represents the cumulative squared error between 
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the compressed and the original image. A lower MSE indicates a lower error. The 

Mean Square Error can be calculated with the following expression: 

  

where: 

m = number of rows in cover image       

n = number of columns in cover image 

xij = pixel value from cover image         

yij = pixel value from stego image 

B. Peak Signal to Noise Ratio (PSNR) 

PSNR is an acronym for peak signal to noise ratio. Often, this ratio is used to 

compare the quality of an original image and a compressed image. In the quality 

degradation of image and video compression, PSNR values differ from 30 to 50 dB 

for 8-bit data and from 60 to 80 dB for 16-bit data. The accepted range of quality 

loss is about 20 - 25 dB for wireless transmission (Sara et al., 2019). An image that 

is compressed or reconstructed with a higher PSNR value will have better quality. 

The PSNR can be calculated with the following expression: 

10log10[max(max(x), max(y))]2 

 PSNR(x,y) =  (3.20) 

(x − y)2 

where: 

x = original reference image   

y = restored or noisy image 

C. Structural Similarity Index (SSMI) 

A structural similarity index measures the similarity between images based on 

perception. Deterioration of an image is viewed here as a change in perception of 

structural information. The SSMI can be calculated with the following expression: 
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where: 

µx = average of x                    

µy = average of y  

σx
2 = variance of x  

σy
2 = variance of y  

σxy = the covariance of x and y 

c1 = (k1L)2 variables to stabilize the division with weak denominator       

c2 = (k2L)2 variables to stabilize the division with weak denominator        

L = dynamic range of the pixel-values                    

k1 = 0.01default            

k2 = 0.03 default 

3.3 RESEARCH PLAN 

To accomplish this research, a research plan is proposed, which is divided into three parts: 

preparation and planning, development and test, and report and presentation. In 

preparation and planning section activities like designing research question, literature 

review, data collection, designing a method, presenting a proposal, along with paper 

publication. In development and testing part activities like specifying detail requirements, 

developing a prototype, followed by the actual development of technique, which then is 

tested and validated. The incremental release will be performed here, corrections will be 

also performed wherever needed. 

Different tasks will be performed in the report and presentation part. Results and 

measurements will be carried out followed by thesis writing, and paper publication. 

Training’s, prerequisites courses will be taken to develop the skill sets requires to 

construct and support the research. 
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3.4 SUMMARY 

A research framework is set up here which acts as guidance to complete the research that 

comprises different steps. The output of each step serves as an input for the next steps. 

Ways of collecting data, sampling, and pre-processing are described in the data collection 

and preprocessing section. Later a method is proposed that feeds the pre-processed data 

and uses a CNN autoencoder neural network to output a result. Various industry-standard 

quality metrics are proposed to measure its performance. A research plan is also 

developed to accomplish this research.  
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CHAPTER 4 

IMPLEMENTATION 

4.1 INTRODUCTION 

This chapter describes the steps taken to implement the model. First, the process flow is 

mapped out and then developed. Later, the developed model is tested with different 

quality metrics. Figure 4.1 depicts the process flow diagram. Table 4.3, Table 4.2 and 

Table 4.3 depicts composition of encoder layer, decoder layer and model respectively. 

 

Figure 4.1: Process Flow Chart 
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There are four convolutional layers in the encoder layer, each of which uses ReLU as an 

activation function. Each layer has a filter size of 32, 16, 8, and 8. In the first three layers, 

batch normalization is performed. After batch normalization in the first layer, maximum 

pooling is performed. 

 

The decoder layer consists of four convolutional layers. Besides the last layer, each layer 

has ReLU as an activation function. Filter sizes are 32, 16, 16, and 3 for each layer. The 

first three layers are normalized in batch, and the first two layers are upsampled. The last 

layer uses sigmoid as an activation function. Each layer of the encoder and decoder layer 

are stacked together, and a sequential model is built.  
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4.2 CODING 

Due to its simplicity, consistency, access to AI and machine learning (ML) libraries, 

flexibility, and platform independence, this model is built using Keras, TensorFlow’s 

high-level API for constructing deep learning models. For measuring quality, scikit-

image package is used. Scikit-image is a collection of image processing algorithms (van 

der Walt et al., 2014). At first, all the required libraries are imported, which is then 

followed by loading training and testing datasets. Each pixel in these images will have a 

value ranging from 0 to 255. To make the model efficient and faster, small centered values 

near 0 are taken. 
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An Autoencoder Network is then constructed, where the encoder is used to represent the 

data in the simplest possible way. This is done by extracting the most prominent features 

and presenting them in a way that the decoder can understand. Whereas the decoder learns 

to read compressed code representations and generate them based on those 

representations. Each convolution layer uses ReLU as an activation function to increase 

the computational speed and also removes the vanishing gradient problem. 

The Batch Normalization ensures that the gradient signal is heard by preventing 

gradients from becoming too small. Upsampling is done in the decoder network using 

UpSampling2D, which scales up an image by using nearest neighbour or bilinear 

upsampling. At the end of the layer sigmoid is used as an activation function, making sure 

that the output is between 0 and 1. 
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The autoencoder model is then compiled used adam optimizer and the loss is measured 

using MSE. 
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As, the comparison is happening between constructed and original images, both x 

and y are equal to X_train. Here epochs define the number of times the training data to be 

passed through the model and the validation_data is the validation set use to evaluate the 

model after training. Later, the loss and accuracy between training and test data are 

calculated. 

# trains  model with fixed number of epochs  

 

To reduce overfitting regularization options such as early stopping is carried out. 

ModelCheckpoint callback is used here to save weights and models (in a checkpoint file) 

at intervals, so that they can be loaded later to continue the training. 
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52 

 

 

 

A random set of 10 images is picked from the test set and is compared with the original 

and reconstructed images. 
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The compressed results are then compared with different state of the art quality metrics 

such as SSIM, MSE and PSNR with the help of skimage library. 
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To learn a generalizable encoding and decoding model, the model needs to be sensitive 

enough to recreate the original observation, yet insensitive enough to the training data. 

For that noise is added to the input data, but the uncorrupted data remains as a target 

output. 
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 An image is taken random from the testing sample set and DFT compression is applied. 

At first all the necessary libraries are imported, then it is converted into gray scale image. 

 

 
 

Then the image is divided into several 8x8 tiles. These 8x8 2D image are then converted 

into 64x1 one dimensional images. DFT is the applied to 64x1 image to get the amplitude 

and phase at different frequencies. The smaller items in the DFT results are excluded as 

they are insensitive to human eyes. 
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Then, the histogram frequency, log frequency and histogram of log frequency are plotted 

for analysis. 
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The output image after DFT compression is measured using PSNR and MSE.  

 

 
 

4.3 TESTING 

A set of 10000 images is taken to test the proposed model. At first, the test datasets are 

normalized and reshaped. Then it is fed into the neural network. The model complies with 

different settings using adam optimizer. Here, accuracy is used as a quality metric, and 

loss is measured in terms of mean squared error. 
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The loss and accuracy of the model are measured, and the best weights are saved in 

an external file. Regularization techniques are applied for optimization and its 

performance is evaluated. Weights with the best performance are added to the same 

model. 

To check the denoising capability of the model, gaussian noise with low variance is 

added to the train and test the dataset. The model is trained, and its best value is added to 

the model. Quality metrics such as PSNR, MSE, and SSMI are used to measure the 

measure model’s output quality. 

4.4 SUMMARY 

Various activities such as mapping the flow, coding, and testing are carried out to 

implement the model. The model uses an autoencoder neural network and is built using 

Keras. Encoder network extracts the most prominent features of the original data in the 

smallest possible form and stores it in a way that decoder understands it. Noise is added 

to the input to make it more generalizable encoding and decoding model. Various state 

of the art metrics is used to measure the quality of reconstructed image. 
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CHAPTER 5 

RESULTS AND ANALYSIS 

5.1 INTRODUCTION 

This chapter discusses the results of the proposed model through various aspects. 

Different quality metrics are used to measure quality of reconstructed image. The 

proposed method is evaluated with different settings and its performance is also 

measured. 

5.2 RESULTS 

The training dataset is run through the model in an incremental fashion. While training 

the model, Adam is used as an optimizer and loss is calculated in terms of Mean Square 

Error (MSE) as it has better generalization performances than the Cross Entropy (CE) 

loss (Hui & Belkin, 2020). Loss values and accuracy scores while training at different 

iterations is shown below along with the test results. 

 

 (a) Loss vs Model Loss (b) Accuracy vs Model Accuracy 

Figure 5.1: Loss vs Model & Accuracy vs Model Accuracy after 15 epochs 
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Figure 5.2: Original and reconstructed images over 15 epoches 

 

 (a) Loss vs Model Loss (b) Accuracy vs Model Accuracy 

Figure 5.3: Loss vs Model & Accuracy vs Model Accuracy after training 400 epochs 

Certain spikes can be seen in Figure 5.6 (a). Here, the loss first decreases, increases, 

and decreases at last. These spikes are often encountered when training with high learning 

rates, high order loss functions or small batch sizes (Ede & Beanland, 2020). The batch 

   



 

65 

 

size is reduced, and early stopping is added to the model for to avoid overfitting (Rice et 

al., 2020). A checkpoint is also added to save the best value weights obtained while 

training. The maximum accuracy value has reached up to 0.90104 within 200 epochs 

training. 

 

 (a) Loss vs Model Loss (b) Accuracy vs Model Accuracy 

Figure 5.4: Loss vs Model & Accuracy vs Model Accuracy after training 200 epochs 

 

Figure 5.5: Original and reconstructed images over 200 epochs 
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 (a) Loss vs Model Loss (b) Accuracy vs Model Accuracy 

Figure 5.6: Loss vs Model & Accuracy vs Model Accuracy after training 400 epochs 

 

Figure 5.7: Original and reconstructed images over 400 epochs 
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5.3 EVALUATION OF THE PROPOSED METHOD 

The proposed method is evaluated with different settings and its loss is measured. MSE 

is used a loss function to measure the loss. Table 5.1 shows the comparison of proposed 

model with different settings. 

 

 (a) Loss vs Model Loss (b) Accuracy vs Model Accuracy 

Figure 5.8: Loss vs Model & Accuracy vs Model Accuracy after 15 epochs 

 

 (a) Loss vs Model Loss (b) Accuracy vs Model Accuracy 

Figure 5.9: Loss vs Model & Accuracy vs Model Accuracy after 100 epochs 

 

 

   

   



 

68 

 

 

 

 

 (a) Loss vs Model Loss (b) Accuracy vs Model Accuracy 

Figure 5.10: Loss vs Model & Accuracy vs Model Accuracy after 100 epochs using 

batch size of 32 

 

 (a) Loss vs Model Loss (b) Accuracy vs Model Accuracy 

Figure 5.11: Loss vs Model & Accuracy vs Model Accuracy after 100 epochs with 

regularization 
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 (a) Loss vs Model Loss (b) Accuracy vs Model Accuracy 

Figure 5.12: Loss vs Model & Accuracy vs Model Accuracy after training 200 epochs 

with regularization 

 

 

 

Table 5.1: Comparison of proposed model with different settings 

 

From the comparison, the model shows high accuracy with regularization and has 

higher loss with low training. With the increasing number of training variation on loss 

and accuracy can be seen. The model shows low accuracy with the addition of noise value 

to the model with normalization. The model output of an image is then compared with 

the JPEG image which uses DFT compression technique using PSNR and SSIM quality 

metrics. 
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Figure 5.13: Original, JPEG and Model Output image 

 

Table 5.2: Comparison of proposed model output with JPEG 

 

The result from Table 5.2 shows that the purposed model output has better 

reconstruction than the existing JPEG compression using DFT.  

5.4 QUALITY MEASUREMENTS 

Various state of the art quality metrics such as MSE, PSNR and SSMI is used to measure 

the quality of the reconstructed result. The results of the original and reconstructed images 

of the random sample are shown in Table 5.3. Table 5.4 depicts the result of the noisy 

and reconstructed image. 
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Table 5.3: Quality measurement using quality assessment techniques for original vs 

reconstructed image 
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75 

Table 5.4: Quality measurement using quality assessment techniques for noisy 

vs reconstructed image 
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5.5 SUMMARY 

The results obtained using the proposed model with different settings are explored. 

MSE is used as a loss function to calculate the predicted errors across the training 

samples. The accuracy of the results is also measured. Different regularization 

techniques are applied for optimization. The model is also evaluated with noisy 

data along with other quality metrics: MSE, PSNR, and SSMI and the   

reconstructed output of model is compared with JPEG image using PSNR and  

SSIM quality metrics.
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

6.1 INTRODUCTION 

This chapter discusses the research findings and derives a conclusion based on the 

results of evaluations. The contribution of this study is discussed in the contribution of 

the study section and future recommendations are made. 

 

6.2 DISCUSSION AND CONCLUSION 

In this dissertation, a CNN model is presented to reduce the construction loss. The 

experimental evaluation of the proposed model shows that it has better quality results 

with reduced construction loss. 

 

The proposed model uses an autoencoder network where the encoder layer 

compresses the input image into encoded representation and the decoder layer decoded 

the encoded representation using knowledge representation. The magnitude of encoded 

representation is smaller than input data. The evaluation results show that with 

regularization, the reconstruction loss dropped significantly, and performance also 

increased.  

 

The reconstructed results are compared with different state of art quality metrics. 

The evaluation result shows that CNN techniques achieve good compression with better 

reconstruction compared to JPEG using DFT compression. In addition, CNN techniques 

can reconstruct an image from a noisy image, where the noise is tied to the image’s high-

frequency content can be reconstructed. 

 

6.3 CONTRIBUTION OF THE STUDY 

This research makes three contributions. First, the study of the relationship between the 

border effect problem and DFT compression in relation to JPEG, and various state of art 

solutions to it. Second, propose a compression technique using CNN, to capture the most 
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essential elements of the input image to learn a lower-dimensional representation and 

reconstruct the image based on compression knowledge representation. Third, this 

proposed technique reconstructs images from a noisy input with moderate quality results. 

 

6.4 FUTURE RECOMMENDATIONS 

This research has highlighted several areas where further research can be beneficial. 

These highlighted areas are mostly mentioned in the literature review. Besides that, 

several additional areas such as further investigation of regularization techniques along 

with variations of the autoencoder can be carried out for better performance. 

 

Furthermore, different data sets with different settings can be used to explore to 

minimize the reconstruction loss. Improving the quality of the noisy image can also be a 

great topic to investigate. 

 

6.5 SUMMARY 

Various aspects of the proposed technique are discussed, and conclusions are made based 

on the results of the evaluation performed. The research contributions are discussed in 

the contribution of the study section and based on the findings of the research 

recommendations are made.  
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