

Forecasting SOXX with Long Short-Term Memory (LSTM)

Neural Networks Based on Varying Sampling Periods

By Lester A. Leong

A Dissertation

Presented to the Department of

Finance & Economics

program at Selinus University

Faculty of Business & Media

in fulfillment of the requirements

for the degree of

Doctor of Philosophy in Finance & Economics

2023

3

Declaration

The thesis titled “Forecasting SOXX with Long Short-Term Memory (LSTM) Neural Networks

Based on Varying Sampling Periods” submitted for the award Doctor of Philosophy in Finance &

Economics at Selinus University of Sciences and Literature, Faculty of Business and Media; is my

original work.

I do hereby attest that the work reported therein has been carried out by me and all sources of

information have been specifically acknowledged by means of references.

In my capacity as supervisor of the candidate’s dissertation, I certify that the above statements are

true to the best of my knowledge and the research wok fulfils the requirements of standards set out

by the University for the award of PhD.

Student ID: UNISE2175IT

01/05/2023

Signature Date

4

Dedication

I dedicate this study to a few individuals. First, to my beloved Lydiana. Lastly, to my first

research professors who fostered my interest in research: Dr. Buhse and Dr. Whelan.

5

Acknowledgments

I am grateful to Elvira Di Mauro and Dr. Sabrina Mazza. From their feedback, I was able

to mold scattered writings into this study presented. In addition, I would like to thank Selinus

University for the opportunity to perform this research.

6

Abstract

This paper modeled and predicted the iShares Semiconductor ETF (SOXX) stock price using

LSTM. The historical data of the SOXX were transformed into a rolling sequence starting from

4180 daily closing prices to an additional 465 daily closing prices out of sample. Compared with

random prediction, the LSTM model improved the accuracy of stock returns prediction 19.7%

over 50% random chance. The work showed how powerful LSTM is at predicting the stock market

in SOXX, which is mechanical but much less predictable due to the varying results of

hyperparameter turning.

0

Table of Contents

Chapter 1: Introduction ... 3

Background of the Problem... 3

Problem Statement .. 5

Purpose Statement ... 6

Nature of the Study ... 6

Research Questions ... 7

Hypotheses .. 8

Conceptual Framework ... 8

Operational Definitions .. 9

Assumptions, Limitations, and Delimitations ... 11

Assumptions ... 11

Limitations .. 12

Delimitations .. 12

Significance of Study for Applied Financial Time Series .. 12

Summary .. 13

Chapter 2: Literature Review .. 15

Introduction ... 15

Overview of Statistical Methods of Financial Forecasting .. 16

Financial Forecasting with Traditional Econometric Methods .. 17

Autoregressive integrated moving average (ARIMA) ... 17

Generalized autoregressive conditional heteroskedasticity (GARCH) ... 20

Financial Forecasting with Machine Learning .. 24

Support Vector Machine Theory ... 27

Support Vector Machine Forecasting Research ... 31

XGBoost Theory ... 33

1

XGBoost Forecasting Research ... 36

Improvements with Deep Learning ... 38

Deep multilayer perception (DMP) ... 39

Convolutional Neural Networks (CNNs) .. 41

Restricted Boltzmann Machines (RBMs) .. 42

Deep Belief Networks (DBNs) ... 44

Auto Encoders (AEs) ... 45

Deep Reinforcement Learning (DRL) ... 46

Recurrent Neural Network (RNN) Theory .. 48

Recurrent Neural Network (RNN) Forecasting Research ... 52

Long Short-Term Memory (LSTM) Theory .. 53

Long Short-Term Memory (LSTM) Forecasting Research .. 58

Empirical Financial Time Series Forecasting... 60

Summary .. 61

Chapter 3: Methodology ... 63

Research Design .. 63

Research Questions ... 64

Population and Sample ... 65

Role of the Researcher .. 66

Geographical or Online Location .. 66

Procedure ... 66

Instrumentation... 66

Data Collection .. 67

Data Analysis ... 67

Hypothesis Tests .. 68

Triangulation ... 70

Informed Consent Process and Ethical Concerns .. 70

2

Trustworthiness of the Study ... 70

Limitations ... 70

Delimitations .. 71

Summary .. 71

Chapter 4: Findings ... 72

General Description of Participants .. 72

Unit of Analysis and Measurement ... 72

Sample Size .. 73

Pilot Testing ... 73

Data Collection .. 73

Codebook Creation ... 73

Qualitative Results .. 74

Results of Hypothesis Tests .. 74

Outliers .. 75

Summary .. 75

Chapter 5: Concluding the Study .. 76

Summary of the Study .. 76

Ethical Dimensions .. 76

Overview of the Population and Sampling Method ... 76

Limitations ... 76

Findings .. 77

Reflection ... 77

Recommendations ... 78

Suggestions for Future Research ... 78

Concluding the Study ... 78

References ... 79

Appendix A: Tables .. 93

3

Appendix B: Figures ... 95

Appendix C: Instruments .. 97

Appendix D: IRB Approvals and Consent Form .. 98

Appendix E: List of industry standard measures .. 99

Appendix G: Python Code used for the current study .. 101

Appendix H: Seed Code .. 106

Appendix I: LSTM Model .. 111

Appendix J: Detailed Testing and Modeling Procedures .. 113

4

Chapter 1: Introduction

Semiconductors essentially are the backbone of many industries including

cryptocurrencies, artificial intelligence, automobiles, smart appliances, etc. In light of the

numerous demand for semiconductors, difficulties in analyzing non-linear patterns of pricing for

semiconductors emerge. The problem stems from many issues but common examples include

forecasting demand in light of technological advances, seasonality effects, price shocks due to

supply chain issues, etc. In light of this complex issue and the rise of machine learning, this study

aims to apply deep neural networks forecasting, specifically Long Short-Term Memory (LSTM),

on iShares PHLX Semiconductor ETF (SOXX) from historical prices. The type of data will only

be SOXX historical price data collected from Yahoo Finance from the dates of 2009-2020, and the

frequency of the data collected will be daily. The data will be analyzed with Python and modeled

with a deep learning neural network time series forecasting approach: Long Short-Term Memory

(LSTM) with varying training periods. Training in data science refers to the sampling period that

the model takes in before creating a forecast. The forecast period will be 12 months, effectively

an annualized forecast.

Background of the Problem

A common starting point in modern finance includes the Efficient Market Hypothesis

(EMH). EMH states that market participants cannot accrue above-average profits without

accepting additional risk (Ţiţan, 2015). EMH is normally combined with the Random Walk

Theory to claim that prices cannot be forecasted, since the new information was not within the past

or present prices (Weng, et al., 2018). EMH claims that prices follow a random walk, which makes

accurate price predictions impossible. The topic of EMH has been popularly debated and has had

both academic and practical evidence against it. For example, more evidence shows statistical

time series and machine learning models making accurate future predictions from past prices, and

famed investor Warren Buffett has consistently delivered abnormal returns (Weng, et al., 2018).

What appears to be randomness might be a non-linear pattern, which SOXX has plenty of.

Given the right model, these complex patterns may be analyzed for an accurate forecast. The

semiconductor business is known for large fluctuations and predicting the turning point of the

business cycle is of greater importance for business owners. The typical product life cycle for

5

semiconductors is roughly 18 months and a forecasting advantage of a business cycle turning point

would drastically improve profits (Liu, 2006). Prior models applied to forecast semiconductors

have only included autoregressive moving average, Markov switching, and vector autoregressive

(Aubry, 2014).

Asset price forecasting models based on past prices tend to fall into two broad categories:

statistical time series and machine learning-based. For statistical time series models, the most

popular ones include autoregressive integrated moving average (ARIMA) and generalized

autoregressive conditional heteroscedasticity (GARCH). The limitations of these statistical

models include a requirement for model pre-specification, increasing estimation error with

increased model complexity, and inferior predictive performance compared to machine learning

(Weng, et al., 2018). On the other hand, machine learning models for time series forecasting can

be classified into four broad categories: artificial neural networks, classification and regression,

ensembles, and hybrid approaches. This paper will focus on a specific type of artificial neural

network known as long short-term memory (LSTM).

The first type of neural network to forecast time series events was a recurrent neural

network (RNN), but the problem with RNNs is their inability to store long time series (Su, 2020).

In light of this long-term neural network problem, researchers improved RNNs into what is known

today as a long short-term memory (LSTM) network (Hochreiter, 1997). In a normal RNN, long

time series forget their beginning data, since more recent data take up higher weights that are

calculated through the neural network’s forecast error as gradients. These gradients that happen

long ago end up being forgotten, which coined the popular term vanishing gradients (Su, 2020).

LSTMs solve the vanishing gradient problem by including another component with the neural

networks known as the cell state. The cell state keeps track of all major information from all the

neural networks which solves the long-term memory problem of RNNs.

This paper aims to further examine the performance of LSTM time series forecasting with

financial prices. Other research has shown the performance of LSTM for large indices such as the

S&P 500, Dow Jones Industrial, and Nasdaq with promising results, yet similar papers are not too

transparent in their model creation for independent replication (Shen, 2020). Other time-based

LSTM models have displayed promising results such as a 53% accuracy with an annualized return

of 46% from forecasting US indices (Su, 2020). This study aims to add to the existing literature

6

of LSTM performance in forecasting asset prices along with providing a more transparent model

for future studies.

Problem Statement

The problem to be addressed is the stochastic behaviors that asset returns display with non-

stationary and non-linear features make price forecasting a difficult task. The problem of

successful asset pricing alludes to most retail traders since various broker data shows roughly 80%

of retail traders are unprofitable (Ninja, 2019). Professional money managers do not fare any

better, since 50% of hedge funds close within two years of operation (Wetering, 2020). For

example, supporters of the efficient market hypothesis state that predicting future asset prices with

past prices is a fruitless endeavor (Mehtab, 2020). This task is even more challenging once

combined with the cyclical factors within the semiconductor industry due to the focus on the

SOXX index (Liu, 2006).

The literature search revealed that advancements with stochastic models such as deep

neural networks can make time series forecasts, yet there has not been a dominant model that

provides high accuracy and consistent forecast. As a result, time series forecasting of asset prices

with deep neural networks is still a contested topic (Su, 2020). Even more so, deep neural networks

such as long short-term memory networks have various complexities that make finding a decent

forecasting model challenging. As for semiconductors, vector autoregression models show

practical forecasts (Aubry, 2014). Yet results in other forecasting research from other industries

hint at the promise of an even more accurate machine learning forecast that may translate into the

semiconductor industry (Bagnall et al, 2016).

Purpose Statement

The purpose of this study is to add to the ongoing discussion that past prices aid in future

price prediction, expanding the models used for forecasting in the semiconductor industry, and

exploring the limits and uses of varying LSTM architectures for time series forecasting with asset

prices. In particular, this paper will examine iShares PHLX Semiconductor ETF (SOXX) daily

prices with long short-term memory neural networks (LSTM) for researchers and practitioners

interested in financial time series forecasting with deep learning given this econometric study

located virtually with Selinus University. Data will be obtained via Yahoo Finance and will be

7

managed with Application Programming Interface (API) calls within Python with Pandas Data

Frames.

Nature of the Study

This study will be predominantly quantitative because of the nature of time series

forecasting. But some qualitative approaches are applied such as action research, which allows

studies created to link theory to practice to drive a change (Bhandari, 2020). In this study’s case,

findings from this time series forecasting model can be applied by semiconductor practitioners,

researchers, or investment professionals applying to hedging or investing decisions. Also, the

research presented here will add as a case study to the ongoing discussion of the grounded theory

of the Efficient Market Hypothesis along with the semiconductor forecasting literature.

The design of the LSTM time series forecast will mainly comprise data collection of the

daily ETF prices and analysis of forecasting quality with industry-standard metrics. As stated

before, the data will be gathered from Yahoo Finance via API and stored as a comma-separated

file (CSV). The analysis will occur in an open-source programming language called Python. With

Python, open-sourced libraries such as TensorFlow 2 and Pandas data frames will be applied to

create LSTM deep learning models that will in turn output forecasted ETF prices. The forecasted

output will be analyzed by conventional machine learning time series metrics and return on

investment compared to a buy and hold strategy.

Research Questions

Out of the entire scope of this study, there are three major research questions. The first

question asks how well the forecasting technique performs. The second question asks how well

the forecasts can perform about other strategies concerning investing decisions. The third question

focuses on how much data is required if the forecasts prove to be fruitful.

Research Question 1: Does LSTM with SOXX prices offer accurate forecasting?

Research Question 2: Can LSTM SOXX price forecasts be deliver higher returns than buy

and hold?

Research Question 3: How sample size or training period LSTM forecasting accuracy?

8

Hypotheses

The hypotheses aim to further drill down from the research questions to provide a clear

demarcation for a successful or unsuccessful experiment. In this case, the study tests how well an

accurate forecast is, what practical investment benefit LSTM models have against more traditional

methods, and how much daily pricing data is required to maintain an accurate forecast. The first

hypothesis aims to evaluate the accuracy of the overall forecast. The 50% level was chosen for

practical purposes. With a model that forecast greater than 50% accuracy, a trader can take

financial derivatives that offer a ratio of 1 to 1 risk-reward set up. Meaning if the trader can have

predict better than 50% accuracy, they can set up a trade that offers at one unit of risk for at least

one unit of reward for profit. Effectively, the trader would get odds similar to being the casino in

a game of roulette. The second hypothesis targets the practical benefit of choosing a more complex

model (LSTM) against a more simple strategy. The last hypothesis tests how much data is required

to operate the model, since excess data leads to increased costs on operating the model is taken

into a business setting.

H01: LSTM models do not produce accurate (<=50%) forecasts.

HA1: LSTM models do produce accurate (>50%) forecasts.

H02: LSTM models do not generate higher absolute returns compared to buy and hold.

HA2: LSTM models do generate higher absolute returns in comparison to buy and hold.

H03: Sample size does not affect LSTM forecasting accuracy (<= +/-10%).

HA3: Sample size does affect LSTM forecasting accuracy (> +/-10%).

Conceptual Framework

When discussing modern finance, the concept of the Efficient Market Hypothesis (EMH)

tends to enter the discussion. EMH states that investors cannot gain superior returns to the market

(Ţiţan, 2015). There are many positions to EMH’s claims, but this study aims to test research

against the idea that investors cannot gain superior returns to the market. Superior returns in this

paper will refer to alternative strategies that outperform a buy and hold strategy of the same asset.

The challenge to EMH for this study started from a combination of improvements in time series

forecasting methods, increased computing power, and low cost to access asset pricing data.

The difficulties with time series forecasting derive from the non-linear patterns that may

occur and changes to underlying fundamentals of the time series in question. One known statistical

9

solution to handling time series forecasting is known as Auto-Regressive Integrated Moving

Average (ARIMA), in which the time series is differenced and autocorrelation with partial

autocorrelation is analyzed (Siami-Namini et al., 2018). With the culmination of the three

technological advances stated earlier, machine learning, specifically deep learning, methods can

identify non-linear patterns and other complexities with time series prediction.

LSTM is a particular type of deep learning neural network, which is known to analyze an

entire time series compared to prior discovered models (Bandara et al., 2020). LSTMs have before

been used to forecast large indices like the S&P 500 and a few stocks. Prior studies have never

forecasted a semiconductor-related asset index with deep learning. A comparable model was a

vector autoregressive model that applied macroeconomic factors with factors indices (Aubry,

2014). Besides, prior research of LSTM models applied to financial forecasting lacks full

transparency for forecast reproduction. This study aims to build off of prior research of older

semiconductor forecasting models, machine learning techniques, and present findings where other

studies fell short such as a detailed model architecture.

Operational Definitions

Alpha. An investment manager or investment strategy that out performs a benchmark (CFI, 2020).

API call. An endpoint to a URL that sends a request to a server for data (Rapidapi, 2020).

Application Programming Interface (API). A set of protocols, procedures, and tools that allow

applications to communicate (Rapidapi, 2020).

Autocorrelation. A statistical representation of the degree of similarity over successive time

periods between a given time series and a delayed version of itself (Smith, 2020).

Buy and hold. A passive investing approach in which an investor purchases and retains stocks or

other forms of shares for a long time, independent of market volatility (Beers, 2020).

Deep Learning. An AI functionality that mimics the human brain's roles in the processing of data

for object identification, speech recognition, language translation, and decision-making (Hargrave,

2020).

10

Differencing. A type of transformation that makes a time series stationarity and stabilizes the

mean of the time series (Hyndman et al., 2005).

Exchange traded fund (ETF). A basket of exchange-trading shares, much like a portfolio. When

the ETF is acquired and sold, ETF share rates fluctuate every day; this is separate from mutual

funds that only exchange once a day after the market ends (Chen, 2020).

Long short-term memory (LSTM). Architecture of an artificial recurrent neural network (RNN)

used in the field of deep learning (Siami-Namini et al., 2018).

Machine Learning. A data processing methodology that automates the development of

computational models. It is a subset of artificial intelligence focused on the premise that systems,

with minimal human interaction, can learn from data, recognize trends and make decisions (Siami-

Namini et al., 2018).

Neural Network. A collection of algorithms that, through a mechanism that mimics the way the

human brain works, attempt to identify underlying associations in a set of data (Siami-Namini et

al., 2018).

(Pandas, also referred as dataframe) Data Frame. Two-dimensional size-mutable, with named

axes, theoretically heterogeneous tabular data structure (rows and columns). A data frame is a two-

dimensional arrangement of data, i.e., rows and columns coordinate data in a tabular format

(Geeksforgeeks, n.d.).

Partial autocorrelation. A description of the relation between an observation in a time series

with observations excluded at previous time periods with the associations of intervening

observations (Brownlee, 2020).

Time Series. A series of values taken at successive moments (Hyndman et al., 2005).

Assumptions, Limitations, and Delimitations

Given the restrictions placed on how this study aims to apply LSTM models for SOXX

price forecasting, there are inherent assumptions, limitations, and delimitations. The main

assumption for this research is that past prices can aid in predicting future prices. As for limitations

and delimitations, only one index is studied within a specific time period. Hence any application

11

for other indexes and other periods such as exogenous events like business cycles may not be fully

captured.

Assumptions

The process of time series forecasting assumes that the past observed values can be used

to predict future values (Hyndman et al., 2005). In this study, we assume that this pattern will

apply to financial asset prices to a certain degree and that asset prices can also exhibit non-linear

patterns (Bandara et al., 2020). Assumptions on the modeling perspective assume that LSTMs are

less sensitive to noise since they capture patterns within the time series and preserve that

knowledge through various time steps. Lastly, assumed is that data preparation before the model

begins a forecast will greatly affect the predictive power (Mehtab, 2020). These LSTM nuances

will be manipulated and reported with careful data preparation and model architecture setup.

Limitations

This study will include SOXX ETF daily price data from January 2009 to December 2020.

The ETF is traded on the Nasdaq exchange and is composed of an index of stocks from U.S.

equities in the semiconductor sector. The number of stocks with the SOXX is determined by

iShares (BlackRock , 2021). Regardless of the complexity of neural networks, the forecasting

model will be within the bounds of an LSTM deep learning model. Even in the unlikely event that

SOXX becomes delisted, this study aims to offer further improvements and recommendations with

asset price forecasting with volatile equities such as semiconductors.

Delimitations

This study would be limited to SOXX ETF and no other assets. All sampling and

forecasting will be compared within the same time period as the data was gathered. This study

will not consider factors outside of the price history for the forecast such as news of political

events, corporate actions, sentiment analysis, etc. Only pricing data will be considered for the

forecast. Also, the LSTM model will be created and operated within Python and the TensorFlow

2 package. Other LSTM models from differing languages or packages will not be covered.

Significance of Study for Applied Financial Time Series

The results of this study will aid researchers and practitioners interested in financial time

series forecasting or LSTMs applied for time series modeling. Within financial time series

12

forecasting, the results of this study will add to the going discussion of Efficient Markets,

forecasting techniques on asset pricing, and bridging machine learning with finance. Practitioners

can apply the findings for engineering LSTM models about asset pricing, risk management, or

alpha generation. Lastly, semiconductor business leaders may apply this forecasting research to

improve their planning in the long product times in fabricating semiconductors.

Summary

Chapter 1 introduced the aim of this study, which is to apply statistical analysis and

machine learning methods to forecast future prices of the SOXX, iShares PHLX Semiconductor

ETF, from historical daily prices ranging from 2009-2020. SOXX was chosen due to two main

reasons. First, was the ETF was only covered with momentum strategies in prior literature (Tse,

2015). Although the semiconductor industry was forecasted with other models such as ARMA,

Markov, and vector autoregressive, none have applied deep neural networks for forecasting

(Aubry, 2014). Second, the heightened volatility in the semiconductor industry and cyclical nature

increase the forecasting difficulty. Semiconductor businesses may allocate over 13% of sales that

is highly impacted on what phase the business cycle is in (Liu, 2006). The results of this research

will add to the ongoing discussion in finance about efficient markets and the capabilities of LSTM

time series forecasting on asset prices (Ţiţan, 2015). In particular, the accuracy of LSTMs will be

examined more thoroughly along will sample sizes for forecasts and if LSTM forecasts can

outperform a buy and hold strategy. From a business perspective, accurate forecasts from LSTM

could save semiconductor businesses millions if not billions of dollars for semiconductor

fabrication.

In further chapters, such as chapter 2, this paper will briefly review time series forecasting

methods in the financial realm leading up to LSTM models. As of the last decade, there has been

a large amount of literature done combining machine learning with time series forecasting (Siami-

Namini et al., 2018). Chapter 3 will approach the problem if LSTM models can accurately predict

future asset prices only using prior historical data. The LSTM model will first be trained with

varying sample sizes. Then a separate out of sample historical period will be forecasted and

compared to the actual historical data.

There are three research questions examined: do LSTM with SOXX prices offer accurate

forecasting, can LSTM SOXX price forecasts be used for superior returns, and how sample size

13

or training period LSTM forecasting accuracy? In this study, an accurate forecast will be any

predictions above 50%. Superior returns will be evaluated against the performance of the buy and

hold strategy of SOXX. The question on sample size effect on forecast accuracy will be evaluated

with any accuracy values greater than 10% from another sample size. All analysis will be

performed with Python and data gathered via Yahoo Finance. In chapter 4, developments in the

LSTM’s performance and evaluations will be presented. Lastly, chapter 5 will include

implications, concluding remarks, and further research opportunities with an appendix.

14

Chapter 2: Literature Review

Introduction

Machine learning is significant today, and the world has transformed with the introduction

of artificial intelligence. The business practices in the current world are not those that were used

in the past five decades. Machine learning has become a part of the organization, and leaders are

working to incorporate deep learning skills into the organization while educating employees on

how to use them.

Besides, the models have been used in financial forecasting. Research shows that the

machine learning market is increasing rapidly. In 2017, it made approximately $1.4 billion, and

it’s expected to reach about $8.8 billion in 2022 (BCC Publishing, 2021). The growth rate is around

43.6% from 2017 to 2022. The machine learning market is oversaturated, and the demand for the

ML profession is high in different companies. Machine learning features four main areas:

algorithms, training data, deep learning, and supervised and unsupervised learning. Many

businesses are investing heavily in ML technology and using it to improve their operations (Pan,

2018). Spending on ML is estimated to be $100 billion annually by 2025, showing an annual

growth rate of approximately 40%.

In 1959, Arthur Samuel introduced machine learning, an American interested in artificial

intelligence and computer gaming. The introduction mainly dealt with pattern classification and

the interest in pattern recognition until the 1970s, when teaching strategies were introduced in

1981 (Kewat et al., 2017). Tom Mitchell expanded the definition of algorithms where machine

learning focused more on operational purposes than cognitive terms. The innovation has continued

up to the modern machines, which are recognized as having two main objectives. The first step is

to classify the data based on the models developed. The second aim is to predict the future outcome

based on the presented model. Algorithms used computer vision of moles combined with

supervised learning to train them to classify cancerous moles. Machine learning was invented by

the passion of artificial intelligence users when some tried to approach a given problem using

different symbolic methods known as neural networks (Dutta, 2014). In the process, they

developed generalized linear and probabilistic models commonly used in the medical industry.

Today, machine learning is used in the stock market to inform investors about the future through

predictions. The objective of machine learning has changed from artificial intelligence to focus on

solvable problems of a practical nature.

15

Overview of Statistical Methods of Financial Forecasting

Financial forecasting is a sensitive area that needs good skills and the application of a

quality algorithm that will be of value in the market. The stock market contains buyers and sellers,

and each is looking for quality, which means when the correct software predicts the accuracy of

the values, it will attract many sellers or buyers. There are many algorithms in the market to help

in the prediction of different stock prices. Some products are challenging in price prediction;

therefore, they require enough research before engaging in any of the algorithms to avoid losses.

The accuracy of their predictions drives investors in the stock market (Jackson et al., 2018).

Therefore, a subset of investors is willing to spend on a particular algorithm software to improve

accuracy in their returns. The stock market is challenging, and individuals can sustain a

competitive advantage by using the correct algorithm and prioritizing accuracy. Financial

forecasting uses different algorithms because manual prediction is a difficult task.

There are different types of financial forecasting, such as the straight-line forecasting

method, commonly used when the company's growth rate is constant. This involves basic math

with historical data and needs growth prediction, so it's essential to select the best algorithm to

serve the task. Another method is the moving average forecasting method; this calculates the

average performance in particular metrics over a short time frame in terms of days, quarters, and

months. It is not reliable over more extended periods, such as years. Simple linear regression is

another forecasting approach. This method is trustworthy for charting a trend line depending on

the connection between dependent and independent variables. It shows the changes in the Y-axis

(dependent variable) to the changes in the X-axis (explanatory variables) and later creates a graph

line (Altan & Karasu, 2019). Lastly are the multiple linear regression forecasting methods. It uses

more than two independent variables to project. It creates a model of the relationship between the

independent explanatory variables and the outcome. The investor should select the best algorithm

for the forecast using different methods to be successful. The commonly used algorithms are

ARIMA, GARCH, SVM, XGBoost, RNN, and LSTM.

Financial Forecasting with Traditional Econometric Methods

Autoregressive integrated moving average (ARIMA)

The ARMA model is a frequently used time series analysis tool. ARIMA is an

Autoregressive Integrated Moving Average based on the ARMA Model. The ARIMA model is

16

unique in that it transforms non-stationary data into stationary data before using it. The ARIMA

model is often used to forecast linear time series. The ARIMA method is very flexible in

identifying, parameterizing, and predicting univariate time series models.

In their article, Kumar and Thenmozhi (2014) carried out research to establish and identify

the most suitable hybrid model for predicting stock index returns. The authors developed three

distinct hybrid models, merging ARIMA and non-linear models like artificial neural networks

(ANN), support vector machines (SVM), and random forest (RF), to be utilized in forecasting

stock index returns. The performance of the three models is compared against that of ARIMA-

SVM, ARIMA-ANN, and ARIMA-RF. The competing models are then assessed based on trading

performance and statistical metrics through a specific trading strategy. The authors conclude that

the hybrid ARIMA-SVM model is best suited to forecasting stock index returns due to its high

level of accuracy and improved returns.

To determine the Shanghai securities composition stock index, Du (2018) utilized the

ARIMA model and combined it with several nonlinear models to ensure better accuracy in

forecasting and improved results. The author compared two models in his study: the ARIMA

model and the BP neural network technique. In his conclusion, the author describes the ARIMA-

BP neural network as a superior model compared to the BP neural network on the basis of accuracy

in forecasting.

Wang & Guo (2020) use a hybrid model called DWT-ARIMA-GSXGB to forecast stock

prices. The authors utilize the discrete wavelet to divide the data into error and approximation

parts. They incorporate four models into their study: ARIMA (0, 1, 1), ARIMA (1, 1, 0), ARIMA

(2, 1, 1), and ARIMA (3, 1, 0) to handle partial data, while the improved Xgboost model controls

the error in partial data. Prediction results from the various models are merged using wavelet

reconstruction. Based on the study research, the authors conclude that the DWT-ARIMA-GSXGB

has more minor errors compared to other models. In addition, they also outline that the hybrid

model has better approximation ability and can be used to predict the stock opening price index.

In the article "A Prediction Approach for Stock Market Volatility Based on Time Series

Data," the author’s primary aim is to design a well-structured forecasting model for two indices

on two distinct Indian markets, the Sensex and the Nifty. The authors apply a logarithmic

transformation to the data, and two AFRIMA models are evaluated to predict the two indices. The

authors chose two principal ARIMA to represent the models (0, 1, 0) with a drift to guarantee

17

accurate results and conclusions. In their conclusion, the authors outline that a well-chosen

AFRIMA model is accurate enough to forecast time series data. The author’s conclusions are

formed under the predicted values of the incorporated models, whose deviation margin averaged

5% of the actual outcome (Idrees et al. 2019).

In the article "ARIMA: An Applied Time Series Forecasting Model for the Bovespa Stock

Index," the authors used MAPE to dictate the most accurate model among several forecasting

models that would be most accurate in forecasting the Brazilian stock index - Bovespa. In the

suggested models, an autoregressive model is compared with two distinct exponential smoothing

models and an ARIMA (0, 2, 1). In the article, when designing the ARIMA model, the Box-Jenkins

methodology is followed. The authors determined that an AR (1) was the most precise model based

on the data because it had the lowest out–of–sample MAPE. They also concluded that for the

Bovespa model, an AR (1) was a suitable tool to forecast the index (Junior et al. 2014).

In their research, Jackson et al. (2018) utilized the Box-Jenkins methodology to construct

a seasonal autoregressive integrated moving average, also known as SARIMA. The main aim of

building the model was to forecast the short-term power flows of transmission entities in the United

States. According to the authors, a SARIMA is an advanced AFRIMA that should be used in the

event of a seasonal pattern in the particular time series intended to be forecasted. The study

concluded that by administering the Box-Jenkins methodology approach, building a model

compatible with the data of the selected model in the research is achievable, and the model would

provide precise forecasting for the time series. In the scenario of a seasonal pattern in the time

series, a SARIMA would be ideal for forecasting the time series. In addition, the authors also

outlined that a SARIMA would be more accurate in short-run forecasting compared to the long-

run.

Generalized autoregressive conditional heteroskedasticity (GARCH)

Volatility is a critical element in finance. It is essential in disciplines such as risk

management, portfolio modification, and security pricing. Volatility is a fundamental aspect of the

Black and Scholes formulation. The error variance in financial determination cannot be constant;

instead, the series displays volatility in clustering. (Reider, 2012). Clearly, heteroscedasticity

pervades financial time sequences. Therefore, future volatility is an essential determinant for

18

financial investors. That is why financial prototypes are analyzed and factored in by their capacity

to issue accurate financial forecasts. (Andersen et al., 2013).

When assessing the accuracy of models, analyzing previous research is necessary for the

application of various evaluation measures. The most common applied measures are the Mean

Absolute Percent Error, Mean Square Error, and the Root Mean Square Error. When determining

which model is sufficient, it is inaccurate to weigh which model is dominant over the other in

relation to the evaluation measures. The appropriate approach to resolve the issue is to first

calculate the average figures of some of the statistical measures and then evaluate the forecast

models based on the data and requirements factored into the forecast analysis.

The GARCH volatility models are an essential toolkit for reasonable asset valuation and

financial risk management. Based on the input that Engle and Bollerslev provided, massive

econometric research has played a substantive role in volatility assessment and prediction. Heston

and Nandi create a specific GARCH measurement that produces a systematic solution and issues

a pragmatic analysis of the model. The volatility model validates the addition of the leverage effect,

and volatility grouping is influential in enhancing financial estimation performance.

Regardless of whether the GARCH model does not issue a theoretical description of

volatility or it does, it only issues limited information about the volatility generating process. Based

on this, early attempts to issue a theoretical explanation of the volatility process included the error

distribution hypothesis that Clark and Epps advanced. The variation of stock returns while using

the MDH at a given time is proportionate to the frequency of information arrival, resulting in

volatility clustering that is factored by the information arrival frequency. All the trading parties

receive price indicators concurrently, which leads to a new equilibrium.

Harvey and Sucarrat's (2014) research on GARCH theory models, their main idea on the

asymmetric model was based on models' leverage effects, which affected the level of either good

or bad news in equal measures and had distinct effects on the market’s volatility. The EGARCH

model captures the asymmetric properties of stock return volatility. In their conclusion, they pick

the EGARCH model as the best forecasting model for stock volatility due to three parameters.

Liu et al. (2016) validate that the GARCH model is a convenient model for predicting stock

market volatility. Using the GARCH model, Liu et al. studied the prediction of stock market

precariousness in China. The study realized the forecast findings by implementing the GARCH-

SGED model were more feasible than using the GARCH-N model. This indicated the importance

19

of tail thickness and skewness in the conditional assessment of returns for evolving financial

markets. The GARCH-SGED model issues fewer mean absolute percent errors and mean square

errors as compared to when using the GARCH-N model when studying the Chinese stock market.

Christoffersen et al. (2013). They also examined the predictability of stock market

precariousness in Israel while using the GARCH model. The result would indicate the skewness

of the GARCH model with fat-tailed thickness increases the accuracy and general estimation for

measuring conditional variance. The forecasts tested the GARGH model, confirming its reliability

over the EGARCH, GJR, and APARCH models. GARCH's reliability in forecasting the Israeli

stock market was considered accurate as compared to other models based on its ability to eliminate

significant errors in forecasting stock market volatility.

Vošvrda and Žıkeš (2004) utilized the GARCH-time model to portray the volatility of stock

returns in the Hungarian and Czech markets by utilizing their weekly data, which was recorded

from 1996 to 2002. In addition, the two used index series as a replacement for their returns. In the

aftermath of deriving the ARCH test from the Hungarian index, the authors concluded that tests in

both markets showed a conditional heteroskedasticity in the approximated figures.

Angabini and Wasiuzzaman (2011) assess the forecasting performance of the Malaysian

stock market using several models, including GJR, EGARCH, and GARCH, on the financial crisis

to show how volatility changed in the stock market during the global financial crisis that occurred

in 2008. With all markets hit by the financial crisis, the authors concentrated on the Kuala Lumpur

Composite index. The two came to the conclusion that the Kuala Lumpur Composite Index

exhibited asymmetry, leptokurtosis, and the leverage effect. In addition, they outlined that there

was a considerable increase in the volatility and leverage effect in the market caused by the

financial crisis experienced in a short period of time. The authors also compared how the EGARCH

and the GJR evaluated the change in volatility. The authors noted that the two models produced

similar results in their results, which showed an increase in volatility from 11.5% to 18.5% for the

Kuala Lumpur composite index.

Regardless of these findings by Angabini and Wasiuzzaman, GJR and EGARCH made up

of their nonlinear asymmetric extensions, the two were outdone by the GARCH model, which,

according to the author’s evaluation, measures the most accurate volatility closest to the realized

volatility of the index. This is contrary to the findings of Hassan (2007), whose findings portrayed

20

the GJR as the best-suited model for forecasting the Malaysian stock market under normal

conditions.

Previous research aimed at evaluating the best in-sample fit model proved that it does not

always produce the best out-of-sample predictions. Mantalos (2013) outlined that it was

statistically necessary to specify the conditional mean process, lag order, and distribution of the

error to reflect on the historical movements of the series. The author concluded that the minor lag

order was most suitable to capture changing volatility, hence providing accurate results.

Furthermore, he highlighted that when forecasting the volatility of any index stock market, the

GARCH model is usually utilized due to its small lag order.

In their research to determine volatility in the Shanghai Composite Index and Shenzhen

Composite Index returns, Wang et al. (2021) conducted an empirical analysis using the general

autoregressive conditional heteroskedasticity (GARCH) model. The authors established an

autoregressive moving average (ARMA) model with a time distribution for selected sample series

used to compare the models on different distributions and orders. They further recommended a

threshold-GARCH (TGARCH) and an exponential-GARCH (EGARCH) to be utilized in

collecting information on the index. The authors also evaluated the prediction results and error

degree of other models based on mean squared error (MSE), mean absolute error (MAE), and rot-

mean-squared error (RMSE). Derived results indicated that ARMA (94, 4) and GARCH (1, 1)

outperformed other models in predicting the Shanghai Composite Index return series. In the

Shenzhen Component index case, ARMA (1, 1) and T GARCH (1, 1) depicted the most suitable

forecasting performance compared to all other models.

Lim & Sek (2013) carried out a study to determine the best-suited model to forecast the

Malaysian, Philippines, Singapore, and Thailand stock markets. The authors used several models

in their research that revealed the ARCH model was superior compared to other models in

capturing the stock market volatility in Malaysia and Singapore markets. The study further

revealed that the TGARCH and EGARCH models were more suitable for the Philippines market.

Furthermore, the two concluded that the asymmetry of the market returns was not crucial in the

selected markets forecasted by EGARCH and TGARCH models.

Dutta (2014) carried out research on the exchange rate parties of two countries, the United

States and Japan, for a period of 12 years from 1 January 2000 to 31 January 2021. The author

estimated the collected data using both symmetric and asymmetric GARCH models, and his results

21

showed that positive shocks were standard compared to negative shocks in both countries' return

series. In addition, Dutta concluded that asymmetric tests for volatility tests showed a sizeable

effect on stock news. Furthermore, he outlined that the market risks and return index would be

different from one country to another due to the different market backgrounds.

Panait & Slavescu (2012), in their effort to predict the stock volatility index of seven

Romanian companies listed in the Bucharest stock market, utilized their daily, weekly, and

monthly data from 1997 to 2012 in their research. The two incorporated the GARCH-in-man

model to compare volatility among the companies in three stages. The results from the study

established persistency and consistency in the daily returns, contrary to the weekly and monthly

series, which were expected. In addition, they conclude that the utilized GARCH model failed to

confirm that arise of future returns is caused by an increase in volatility.

Financial Forecasting with Machine Learning

For many years, financial time series forecasting and its related applications have been the

subject of substantial research. When machine learning (ML) began to gain popularity, financial

prediction apps based on soft computing models became accessible as a natural consequence. It

would be good to quickly describe the current surveys covering financial time series prediction

studies based on machine learning in order to obtain historical context, even if our emphasis is on

deep learning (DL) implementations of time series prediction studies for financial time series.

I did not include any survey articles in our analysis that were focused on particular financial

application areas other than forecasting studies since I felt they were redundant. But I came across

certain review papers that covered not just financial time-series research but also other financial

applications, which I found to be problematic. I opted to add those pieces because I wanted to

ensure that our coverage was as extensive as possible.

Examples of the aforementioned publications are given in the next section of the website.

Stock market forecasting, trading system development, and practical examples of forex and market

forecasting applications using machine learning models such as Artificial Neural Networks

(ANNs), Evolutionary Computation (EC), Genetic Programming (GP), and Agent-based models

were all covered in books that were recently published.

There were also other surveys from previous journals and conferences that were included.

A study of financial prediction and planning research, as well as other financial applications

22

employing different Artificial Intelligence (AI) approaches, including artificial neural networks

(ANNs), expert systems, and hybrid models, was conducted by other researchers. In addition, the

authors compared machine learning approaches in several financial applications, including stock

market prediction research. Soft computing models for the market, forex forecasting, and trading

systems were all investigated in the paper. Mullainathan and Spies conducted an assessment of the

prediction process in general from an econometric standpoint in their paper.

Several survey articles focused on a single ML model in particular, which was also

presented during the conference. Despite the fact that these publications concentrated on a single

approach, the implementation areas often included a wide range of financial applications,

including financial time series forecasting research. EC and ANN were the soft computing

approaches that drew the greatest attention overall among the participants.

Chen produced a book on Genetic Algorithms (GAs) and Genetic Programming (GP) in

Computational Finance in preparation for the EC study. Later, Multiobjective Evolutionary

Algorithms (MOEAs) were intensively studied in a variety of financial applications, including the

prediction of financial time series, among others. Meanwhile, Rada examined EC applications, as

well as Expert Systems for the financial investment model, under Rada's supervision.

Li and Ma examined implementations of artificial neural networks (ANNs) for stock price

forecasting and other financial applications as part of their ANN research. The authors of this paper

conducted a review of several ANN implementations in financial applications, including stock

price predictions. In a recent review, Elmsili and Outtaj included ANN applications in economics

and management research, as well as economic time series forecasting, in addition to other topics.

Additionally, there were various text mining surveys that were geared at financial

applications (and specifically, financial time series forecasting). To make predictions about the

market, Mittermayer and Knolmayer analyzed several text mining methods that extract the

market's reaction to the news. In their review, the authors concentrated on news analytics research

for the prediction of anomalous returns for trading techniques, which they found to be particularly

useful. Nassirtoussi and colleagues analyzed text mining research that was conducted for the

purpose of stock or currency market prediction. Text mining-based time series forecasting and

trading methods based on textual sentiment were also investigated by the authors of this paper. In

the same way, Kumar and Ravi examined text mining research for the prediction of FX and stock

23

market prices. Xing and colleagues have conducted a survey of natural language-based financial

forecasting research.

Finally, there were survey papers that were focused on specific financial time series

forecasting implementations, which were called application-specific survey studies. Stock market

forecasting was the study that drew the most attention out of all of them. Many surveys for stock

market forecasting research using various soft computing technologies have been released at

various periods throughout the last few years. As previously stated, Chatterjee and colleagues and

Katarya and Mahajan focused on artificial neural network-based financial market prediction

research, while Hu et al. worked on EC implementations for stock forecasting and algorithmic

trading. The researchers conducted a study of currency prediction studies employing artificial

neural networks (ANNs) and other soft computing approaches in a separate time series forecasting

application.

Despite the fact that several surveys exist for ML implementations of financial time series

forecasting, DL implementations have not yet been thoroughly studied despite the fact that there

have been many DL implementations in recent years. As a result, the poll was primarily motivated

by this need. At this point, we'd want to go through the several DL models that have been utilized

in financial time series forecasting research in general.

Support Vector Machine Theory

Support vector machines play a significant in machine learning, and the devices are

connected to learning algorithms for analyzing the data. SVM is useful in data classification and

regression analysis. The approach was developed by bell laboratories and was first used in 1992.

The inventors thought it was the best way to create non-linear classifiers using the Kernel trick to

the maximum margin hyper-lanes (Tao et al, 2018). The commonly used software is a soft margin

which was built in 1993 and became officially in use in 1995.

These machines are from the family of generalized linear classifiers. They are interpreted

as the perceptron extension. These machines have the property of minimizing the empirical

classification error and increasing the geometric margin, and therefore they are also known as

maximum margin classifiers. Chen et al (2017) note that the support vector machine is one of the

essential prediction tools used in the statistical framework. The theory training algorithm creates

a model which has one example for a single section or the other. SVM is recognized as a non-

probabilistic binary linear classifier in addition to other methods such as Platt scaling. The support

24

vector machine positions training examples to point in space to utilize the width of the gap between

two sections. The new models are mapped in that space and assumed to belong in the section where

the gap falls. The margins support vectors are significant because they are hard to classify

considering they are points within the groups which is closest to the other group. It's a prediction

tool that uses machine learning theory to produce accuracy and avoid overfitting of the data.

Varatharajan et al (2018) state that the support machine theory approach helps perform

linear classification. At the same time, SVM performs in non-linear classification using an

approach called the Kernel trick, which works effectively. Unsupervised learning is needed in

areas where the data is unlabeled, and this helps in finding the natural clustering of data to various

groups. Support vector machine is among the preferred clustering algorithms, and it’s helpful in

industrial applications. Classification of data is essential and regression; the main goal is to find

the effective hyperplane that separates the data points. This is a robust algorithm that many

scientists have used. Creating lines that go to various classes and avoiding splitting observations

from the same class while keeping the considerable distance possible from the classes. The primary

fundamental of SVM is margins and hyperplanes.

Kalantar et al (2018) note that the SVM learning algorithm finds the hyperplane, which

maximizes the margin; by doing that, it creates a reasonable boundary that splits the classes. The

hyper-plan is recognized to work effectively as a decision boundary. The machine has gained

popularity in the world and is currently used in learning research.

Further, the SVM has gained popularity in performing sensitive features such as empirical

performance. The SVM foundation was developed by Vapnik and had many features useful in

research. The formulation of the approach uses a superior principle known as structural risk

minimization (Deng et al, 2019).

Another principle is empirical risk minimization used by the conventional neural network;

however, it is more minor superior. The SRM has a significant role in minimizing the upper bound

of the unexpected risk, and the ERM minimizes the errors in the training data. This describes why

the SVM is unique and more preferred due to its high ability to generalize. This is the goal in all

statistic learning to achieve the best and solve the classification problems effectively. However, in

the current days, it has extended, and it can solve regression problems.

In the old days, the machines used in those days focused on learning representations of

simple functions. That means the main aim was to output a hypothesis that did the correct

25

classification of the training data. Also, the early learning algorithms were designed to find an

accurate fit for the data. Generalization is essential, and the hypothesis can effectively classify the

data that’s not in training. The SVM shows a good performance of less over-generalization when

the neutral network is overgeneralizing easily. To create a hyperplane, the SVM uses an iterative

training program used to minimize the error function. Based on the error function, the SVM model

is categorized into four main groups. First is C-SVM that's type 1; second is nu-SVM type 2

classification; third is epsilon-SVM, a regression type 1; and finally, is nu-SVM, a regression type

2.

Kernel tricks are significant in this SVM, and they are used in non-linear, mapping the

input data to a higher-dimensional space. For instance, the linearly separable uses this concept.

When the data is transformed into feature space, it becomes easy to define the similarity measures

based on the dot products. When the feature space is selected effectively, then recognizing the

pattern becomes easy. The Kernel trick has steps to follow for successful results; its performance

allows SVM to create non-linear boundaries. When expressing the algorithm in the Kernel trick,

it should use only one inner product of the data sets. The concept is known as a dual problem.

Besides, the original data is passed through the non-linear maps to form new data in line

with the new dimension. A pair of wise products are added from the original data dimension to

every data vector. The dot product of the data can be represented when non-linear mapping is done

on them. This is a significant kernel function that has made learning machines more effective in

high demand.

The complexity of the Kernel function impacts the normal functioning of the datasets. The

SVM supports the idea of controlling complexity. However, it doesn't tell how these parameters

are set, and determining these parameters is done by applying cross-validation on a particular

dataset. In statistical learning, the theory is a practical approach designed to provide frameworks

used in studying relevant issues to gain knowledge and make decisions and predictions from a set

of data. It supports choosing the hyperplane space so that it closely represents the underlying

function in the target space. In this theory, the problem of supervised learning is solved using a

specific formula.

26

Support Vector Machine Forecasting Research

Financial time series forecasting is a challenging application in the present days of modern

time series forecasting. The ability of SVM to solve non-linear regression estimation problems

makes it more successful and reliable in time series forecasting (Altan & Karasu, 2019). Financial

series forecasting has not found a tool that can capture the financial market price of the future and

the past. The financial time series is classified into two main parts that are multivariate and

univariate analysis. Multivariate shows any indicator and its relation to the output were direct or

indirect. Whereas the univariate input variables are limited to the time series forecasted. In this

concept univariate is commonly used with the autoregressive integrated moving average method.

On the other hand, multivariate depends on a lot of information such as technical indicators,

Intermarket indicators, and time series being forecasted, they are combined to serve as predictors.

This approach is mainly used with neural networks. This idea of a generalization of the neural

network has been a concern with researchers.

SVM has innovated a novel approach with the aim of improving the generalization

experienced in neural networks. The SVM has improved and with the launching of the insensitive

loss function it has created room for it to solve non-linear regression problems (Calvi et al, 2019)

SVM is more than the traditional machines, it uses structural risk minimization different from the

old empirical risk minimization principle. The SVM principle aims at minimizing the upper bound

of generalization error instead of minimizing the training error. When this is done it leads to a

better generalization instead of conventional techniques. The SVM is good in prediction and gives

good accuracy, it performs prediction faster compared to other algorithms. They use less memory

because of the subset of training points in the decision phase. The system works effectively with a

clear margin of separation and high dimension space.

Making a financial decision in the world is important, however, it depends on the approach

used in making the same decision. The financial time series prediction has noisy data and non-

stationary information and that’s what makes it more important to use SVM. Prediction of stock

market indices is a place of interest since the day the stock market was launched. Researchers have

come up with motivational ways how to predict prices, and the effective way is to implement

superior systems such as SVM that will bring more returns. SVM is useful in regression for

financial forecasting, and it introduces an alternative to the loss function (Jaramillo et al, 2017).

27

The loss function can be designed to have distance measures. The regression can be either linear

or non-linear, and the kernel function can be applied to address the dimensionality of the curse.

The successful financial series prediction is based on the following factors such as first;

the last price of the trade performed during the day, second; the highest and the lowest traded price,

and finally; the total number of goods sold during the day. These conditions are better handled

with SVM considering the nonlinear problem and the uncertainty (Khairalla, & Ning, 2017). The

SVM is good in prediction and Comparing SVM to other classifiers shows that the SVM is superior

to other classifiers. Classifying and predicting data is expected in machine learning and the same

concept is applied in forecasting. When a given data point each belongs to one of the two classes,

the aim will be to decide which class a new data point will be in. in the SVM, the data point is

viewed as p dimensional vector and knows whether the point can be separated with (P-1)

hyperplane dimension; this is known as a linear classifier. Several hyperplanes classify the data,

and the best choice represents the margin between the two classes. A maximum margin hyperplane

exists where the distance to the nearest data point is maximized on each side. The classification of

the task done by the SVM technique involves training and testing data consisting of data instances.

The main aim of SVM is to design a method that predicts the target value for data instances

in the testing set that is given in the attributes only (Kewat et al, 2017). The known label in

supervised learning is essential in informing whether the system is performing well or not. The

information is meant to help the system act in the right way and validate the system's accuracy.

The non-linear classification was created in 1992 and used the Kernel trick concept, and Aizerman

and other researchers originally proposed the ideas. The purpose was to find a way of having a

maximum margin hyperplane. This concept uses the same algorithm; however, each dot product

is replaced by the Kernel function. This gives room for the algorithms to fit in the maximum margin

hyperplane in the transformed feature space. Xiao et al (2020) state that the transformation can be

non-linear and the transformed space with high dimensional. The classifier is hyperplane; the

difference is that it features space in the transformed, and the original input space is non-linear.

The generalization error of the SVM increases when working with the higher dimensional feature

space. The presence of the kernel function has raised the SVM advantage in financial forecasting

in the stock market.

28

XGBoost Theory

XGboost means extreme gradient boosting, and it uses a more improved regularization

that’s L1 and L2 to improve the capability of model generalization. It's a gradient boosting method

that employs an accurate approximation intending to develop an excellent tree model. XGboost is

known for its speed and performance that has dominated the applied machine learning and Kaggle

competitions for structured or tabular data (Mitchell & Frank, 2017). The software is available; it

can be downloaded and installed on machines. The system supports several interfaces such as Julia,

command-line interface, C++, the python interface, an approach in sci-kit learn; the R interface,

which is a model in caret package, Java, and JVM languages and platforms such as scala and

Hadoop.

The software is mainly focused on computational speed and model performance, for

instance, few frills. The machines have many improved features. The model is helpful to the

features R implementation, and also sci-kit learn. The primary gradient boosting supported entails

gradient boosting, stochastic gradient boosting, and regularized gradient boosting. The system has

many features which provide room to be used in the computing environment.

The features such as parallelization involve tree construction used in all the CPU cores at

the time of training (Li & Zhang, 2020). Another feature is distributed computing useful in training

large models where cluster machines are used. Out-of-core computing is used in massive datasets

which can’t fit into the memory, and finally, cache optimization of structures in data and

algorithms to maximize the use of hardware.

The implementation of algorithms was done to create efficiency in computing and memory

resources. The goal of the design is to utilize the available resources for training the model. The

primary features of algorithms implementation entail sparse awareness. It's the implementation

that automatically handles the missing data values (Pan, 2018). Another is block structure that is

meant to support parallelization of the tree construction and, finally, continuous training to boost

the existing fitted model in the new data. Using XGboost is effective in the learning machine it has

high speed and achieves the model performance. In speed, the XG boost is fast and more efficient

than other implementations of gradient boosting. The XG-boost is commonly used; it is fast, has

a good memory, and has accuracy. In the model performance, it dominates the structured and

tabular datasets.

29

XGBoost is a practical approach where the new models are added to correct the mistakes

of the existing models. This model is added in sequence until there is no other improvement made.

XGboost uses a gradient boosting decision tree algorithm with different names such as multiple

additive regression trees, gradient boosting machines, and stochastic gradient boosting. In this

method, new models are designed to predict errors of the previous models and then compiled to

get the final prediction. From the name “gradient boosting," the algorithm's gradient descent is

used in minimizing the loss when new models are added (Dong et al, 2020). The method is useful

in classification and regression to predict the model problem. In applications, decision trees are

helpful in grouping units of data using questions.

Each question in the decision tree will deliver a smaller group of units. The grouping is

done to recognize the units with resembling characteristics with respect to the outcome variable.

A single question asked in every decision node has only two possible choices (Zhang, et al2019).

Besides, at the bottom of every decision tree, there is a single possible decision. Every possible

decision will automatically lead to a choice, and some decisions lead to a choice sooner than others.

These are tree-like graphs, and the XGBoost uses classification and regression trees.

The XGBoost handles the missing values present in the data set. Therefore, in data

wrangling, an individual doesn't need to do a separate treatment of the missing values; the reason

is that the XGboost is in an excellent position to handle the missing value effectively. XGboost

delivers an accurate approximation, and it uses the strengths of the second order of derivative L1

and L2 regularization and parallel computing (Mo et al, 2019). It's a popular algorithm due to its

features and is more regularized. The second order of gradient it uses provides information on the

gradient direction and how it can get the minimum of the loss function.

XGBoost Forecasting Research

XGBoost is used directly for regression predictive modeling. Research shows that the

XGBoost is useful in machine learning, and it has become a preference for many training pieces.

Their primary function is to minimize the loss function. They are essential in improving the

performance of the algorithms by using ensemble learning; they are boosting algorithms. Due to

its regression predictive model the machine is highly preferred in time series forecasting (Zheng

et al, 2017). The XGboost manages the numeric vectors with the characteristics of the Santander

dataset. This algorithm works well when large trees are created and combined to form an excellent

30

predictive model. The basis of the performance of this model depends on the selection of the

correct parameters.

The machine has the ability to predict numerical values such as the number of dollars or

height. From history, The XGboost started as a terminal application that was configured using the

libsvm configuration file. It became famous in the ML competition, and now it has a package of

several implementations such as Java, Perl, Julia, and other languages.

The idea attracted many developers, making it famous in the Kaggle community, where it

was applied for several competitions. Presently, it has more features and packages and thus making

it more efficient to use (Wang & Guo, 2020). The Scikit-learn in python programing language was

developed in 2007 and has been in the market for a decade. This is one of the most commonly used

machine learning libraries. It’s written in python, python, C++, and C. It uses Numpfy for higher

performance in linear algebra and array operations. The

XGboost is a dominating competitive machine and is important in financial prediction.

Kaggle competition has attracted thousands of teams and individuals to public datasets and code

snippets. There are several researchers have documented the performance of the Kagle

competition, and XGboost has emerged among the best. Paliari et al (2021) note that the most

successful algorithm that wins in the competition is based on various factors before it takes the top

position. The most trending algorithm is the gradient boost machine and the neural network, and

for the past five years, it has led to competition. XGboost has won the competition severally due

to its features, and besides, it is scalable and considers accuracy in implementing gradient boosting

machines. XGboost pushes the limit of the computing power to the booted trees algorithms so that

it is assumed that it was created mainly for XGBoost performance and speed. Its property system-

wise allows portability and flexibility and thus has a wide range of computing environments. The

block structure's presence helps parallelize tree construction and its bale to fit and enhance the new

data in the training model. The XG boost is well structured, and it doesn't sacrifice speed over

accuracy; it balances all its operations for better results (Gumelar et al, 2020). Their effectiveness

has made it feature well in financial time series forecasting.

Managing time series forecasting involves solving regression, classification, and ranking.

Users can also use it to predict financial problems in the stock market. The reason for this is that

it’s portable and runs smoothly on windows, OS and Linux. This makes it more preferred over

other algorithms. In terms of languages, it supports all the programming languages such as python,

31

C++, R, Java, Julia, and Scala (Jabeur et al, 2021). Cloud integration works well with ecosystems,

and it supports AWS, Yarn clusters, Spark, and Flink. Based on the system optimization, research

shows that the algorithm uses several optimizations such as parallelization; this approach uses the

sequence tree building with a parallelized implementation. This is possible due to the

interchanging nature of the loops employed for building base learners and the outer loop, which

enumerates the leaf node of the tree, and the second inner loop that calculates the features. Another

approach is tree pruning, which is based on tree splitting within the GBM framework, and it relies

on the negative loss criteria at the point of the split (Yuan et al, 2021). Hardware optimization is

another optimization specifically designed for the hardware resources to make them more effective

and efficient. This process successfully uses cache awareness and allocates internal buffers in

every thread to store the gradient's statistics.

The algorithm works well in financial time series forecasting because of its improved

gradient boosting machine framework, which works through system optimization and enhances

algorithmic. Generally, this approach has played a significant role in classification, and many

people in the stock market have used the concept to get desired results. When it comes to machine

learning, selecting the best algorithm is essential if the user wants accuracy.

Improvements with Deep Learning

Deep learning (DL) is a type of artificial neural network (ANN) that consists of multiple

processing layers and enables high-level abstraction to model data. The key advantage of DL

models is extracting the good features of input data automatically using a general-purpose learning

procedure. Therefore, in the literature, DL models are used in lots of applications: image, speech,

video, audio reconstruction, natural language understanding, sentiment analysis, question

answering, and language translation. The historical improvements on DL models are surveyed.

For more than 40 years, financial time series forecasting has been a hot topic among

machine learning researchers. In recent years, the advent of DL models for financial prediction

research has given the financial community a much-needed boost, as seen by the influx of new

papers in the field. The superior performance of DL models over ML models is the most appealing

feature for finance researchers. New deep learning approaches will be presented when more

financial time series data and other deep architectures become available. In our survey, we

32

discovered that DL models performed far better than their ML counterparts in the great majority

of trials.

There are many types of deep learning models described in the literature, including the

Deep Multilayer Perceptron (DMLP), RNN, LSTM, CNN, Restricted Boltzmann Machines

(RBMs), DBN, Autoencoder (AE), and DRL. It has been well acknowledged in the literature that

financial time series forecasting is mostly a regression issue. However, in the area of trend

prediction, that employed classification models to solve financial forecasting difficulties and were

successful. Different DL implementations are offered, as well as the model options that they use.

Deep multilayer perception (DMP)

DMLPs were one of the earliest artificial neural networks to be built. The distinction

between DMLP and shallow nets is that DMLP is composed of more layers. DMLP models are

composed primarily of three layers: the input layer, the hidden layer, and the output layer. Specific

model topologies may change based on the needs of the issue being addressed. The

hyperparameters of the network are the number of neurons in each layer and the number of layers

in the network as a whole. As a rule, each neuron in the hidden layers contains three terms: an

input (x), a weight (w), and a bias (b). Aside from that, each neuron has a nonlinear activation

function, which results in a cumulative output of the neurons that have come before. Nonlinear

activation functions are classified into many categories. The nonlinear activation functions

sigmoid, hyperbolic tangent, Rectified Linear Unit (ReLU), leaky-ReLU, swish, and softmax is

the most often used nonlinear activation functions.

DMLP models have begun to arise in a number of different application areas. Depending

on the needs of the situation, there are benefits and downsides to using a DMLP model. Through

the use of DMLP models, issues such as regression and classification may be handled by modeling

the data that was provided. However, owing to the fully linked nature of the model, if the number

of input features is increased, the parameter size in the network will rise in proportion, resulting in

decreased computing speed and higher storage requirements. Different sorts of Deep Neural

Network (DNN) approaches have been presented in order to address this problem. Classification

and regression operations may be carried out considerably more efficiently with the help of DMLP.

The backpropagation method is used to accomplish the DMLP learning step. When errors

occur in the neurons in the output layer, the amount of error transmitted back to the preceding

33

layers is calculated. Finding the optimal parameters for neural networks is accomplished via the

use of optimization methods. They are used to update the weights of the connections between the

layers, which are made between the layers. There are a variety of optimization methods being

developed, including Stochastic Gradient Descent (SGD), SGD with Momentum, Adaptive

Gradient Algorithm (AdaGrad), Root Mean Square Propagation (RMSProp), and Adaptive

Moment Estimation (ADAM). Progressive descent is an iterative approach for finding the optimal

parameters of the function that reduces the cost function to its smallest value. SGD is an algorithm

that, for each iteration, picks a small number of samples from the whole data set rather than the

entire data set. The SGD with Momentum technique speeds the gradient descent method by

remembering the update in each iteration. AdaGrad is a modified SGD method that outperforms

the regular SGD algorithm in terms of convergence performance. RMSProp is an optimization

technique that allows for the customization of the learning rate for each of the parameters in the

optimization problem. In RMSProp, the learning rate is divided by a running average of the

magnitudes of previous gradients for that weight, which is a constant across time. ADAM is an

upgraded version of RMSProp that use running averages of both the gradients and the second

moments of the gradients as well as the second moments of the gradients. The RMSProp (which

performs well in both online and non-stationary environments), as well as the AdaGrad, are

combined in ADAM (works well with sparse gradients).

The influence of the backpropagation is carried over to the layers that came before it. When

the impact of SGD progressively diminishes as the influence propagates through the early layers

of the network during backpropagation, this is referred to as a vanishing gradient issue in the

literature. As a result, updates between the early levels are no longer accessible, and the learning

process is brought to an end. The vanishing gradient issue is caused by the large number of layers

in a neural network, as well as the rising complexity of the network.

The hyperparameters of the networks, as well as the technique of adjusting these

hyperparameters, are significant considerations in the DMLP. Hyperparameters are network

variables that have an impact on the network's design as well as the performance of the networks

they touch. These parameters include the number of hidden layers used, the number of units used

in each layer, regularization techniques (dropout, L1, L2), network weight initialization, activation

functions (Sigmoid, ReLU, hyperbolic tangent, etc.), learning rate, decay speed (the rate at which

the network learns), number of epochs, batch size, and optimization algorithms (SGD, AdaGrad,

34

RMSProp, ADAM, etc.). Better network performance is achieved by selecting better

hyperparameter values/variables for the network. As a result, determining the optimal network

hyperparameters is a considerable challenge. To discover the optimum hyperparameters, many

approaches have been proposed in the literature, including Manual Search (MS), Grid Search (GS),

RandomSearch (RS), and Bayesian Methods.

Convolutional Neural Networks (CNNs)

CNN is a variety of deep neural networks that consist of convolutional layers that are based

on the convolutional operation. CNN is a type of DNN that is based on convolutional operation.

Meanwhile, CNN is the most prevalent model that is widely used for classification issues that are

based on vision or image processing techniques. Comparing the use of CNN to traditional deep

learning models such as DMLP, the number of parameters is the primary benefit of using CNN.

By implementing image processing using the kernel window function, CNN architectures with

fewer parameters, which are advantageous for computing and storage, gain an edge in image

processing. There are many layers in CNN designs, including convolutional, max-pooling,

dropout, and a fully connected Multilayer Perceptron (MLP) layer that is completely linked. The

convolutional layer is comprised of the convolution (filtering) operation and several related

operations.

CNN model learning is accomplished via the use of the backpropagation technique. The

most widely utilized optimization techniques (SGD and RMSProp) are employed to identify the

optimal parameters of the CNN model. There are some differences between CNN and other DL

models in terms of hyperparameters. The number of hidden layers, the number of units in each

layer, network weight initialization, activation functions, learning rate, momentum values, the

number of epochs, batch size (minibatch size), decay rate, optimization algorithms, dropout, kernel

size, and filter size are all similar to other DL models. For the purpose of determining the optimal

CNN hyperparameters, the following search methods are employed: MS, GS, RS, and Bayesian

Methods.

Restricted Boltzmann Machines (RBMs)

In this paper, we describe RBM, which is a productive stochastic artificial neural network

that can learn probability distributions on an input set. RBMs are mostly utilized for unsupervised

35

learning, which is the majority of their use. RBMs are utilized in a variety of applications,

including dimension reduction, classification, feature learning, and collaborative filtering, to name

a few examples. The benefit of RBMs is that they may be used to discover hidden patterns using

an unsupervised technique. The drawback of RBMs is the time-consuming training procedure

required. RBMs are difficult to understand because, although there are excellent estimators of the

log-likelihood gradient, there are no known low-cost methods of estimating the log-likelihood in

general.

RBM is a two-layer, bipartite, and undirected graphical model that is composed of two

layers: visible and hidden layers. RBM is a graphical model that is composed of two layers: visible

and hidden layers. The layers are not interconnected with one another at all. Essentially, each cell

is a computational point that receives information and makes stochastic judgments about whether

or not to transfer the signal to the next nerve node in line. Specifically weighted inputs are

multiplied by certain threshold values, and then the resulting computed values are routed via an

activation function, which is a mathematical function. After being output, the findings of the

reconstruction step re-enter the network as an input, and then they depart from the visible layer as

an output. After the operations are completed, the values from the prior input and those from the

results are compared. The goal of the comparison is to narrow the gap between the two groups.

On the network, the learning process is repeated numerous times to ensure success. The

training of RBMs is carried out by reducing the negative log-likelihood of the model and data in

conjunction with each other. The Contrastive Divergence (CD) algorithm is used for the stochastic

approximation method, which substitutes the model expectation for an estimate using Gibbs

Sampling with a restricted number of repetitions using the Contrastive Divergence (CD) algorithm.

The Kullback Leibler Divergence (KL-Divergence) method is used in the CD algorithm to

determine the distance between the reconstructed probability distribution and the original

probability distribution of the input.

The hyperparameters of RBMs include the following: momentum, learning rate, weight-

cost, batch size, regularization method, number of epochs, number of layers, initialization of

weights, size of visible units, size of hidden units, type of activation units, loss function, and

optimization algorithms. The hyperparameters are searched for using techniques like MS, GS, RS,

and Bayesian in the same way as the other deep networks. Additionally, Annealed Importance

36

Sampling (AIS) is utilized to estimate the partition function in addition to these methods. The

optimization of RBMs is also accomplished via the use of the CD method.

Deep Belief Networks (DBNs)

DBNs are a form of deep artificial neural network that is composed of a stack of RBM

networks. DBN is a probabilistic generative model composed of latent variables that may be used

to predict the future. In DBN, there is no connection between the units in each tier of the network.

Unsupervised learning is used to discover discriminating independent characteristics in the input

set, and DBNs are utilized to do so. The capacity to encapsulate higher-order network structures,

as well as the ability to do quick inference, are two of the benefits of DBNs. DBNs have the same

training drawbacks as RBMs, which are discussed in more detail under the RBM section.

Stacked RBM learning and backpropagation learning are the two processes that make up

the DBN training process. The iterative CD method is utilized in stacked RBM learning.

Optimization techniques are used to train the network in backpropagation learning. Similar to

RBMs, DBNs have hyperparameters that are quite comparable to RBMs. DBNs' hyperparameters

include their momentum, learning rate, weight-cost distribution, regularization method, batch size,

the number of epochs, the number of layers, initialization of weights, the number of RBM stacks,

the size of visible units in RBM layers, the size of hidden units in RBM layers, the type of units,

network weight initialization, and the optimization algorithms. The hyperparameters are searched

for using MS, GS, RS, and Bayesian approaches, the same as they do with the other deep networks.

When it comes to DBN optimization, the CD algorithm is also applied.

Auto Encoders (AEs)

AE networks are a sort of artificial neural network that is utilized as an unsupervised

learning model. In addition, AE networks are often employed in DL models, where they remap the

inputs (features) in order to make the inputs more representative for classification and therefore

more accurate. That is, AE networks undertake an unsupervised feature learning process, which is

very well suited to the DL topic. By using AEs to reduce the dimensionality of a data collection,

it is possible to learn a representation of the data set. The design of AEs is similar to that of

Feedforward Neural Networks (FFNNs). They are made up of three layers: an input layer, an

output layer, and one or more hidden layers that serve to link the three levels. Asymmetrical

37

networks have a symmetrical structure, with the number of nodes in the input layer equal to the

number of nodes in the output layer in the input layer and vice versa. The most significant benefits

of AEs are the lowering of dimensionality and the learning of features. Reduced dimensionality

and feature extraction in AEs, on the other hand, has a number of downsides. Because of the

emphasis placed on reducing the loss of data linkages during the encoding of AE, certain important

data connections have been lost. As a result, this might be considered a disadvantage of AEs.

In general, AEs are made up of two parts: an encoder and a decoder (or decoder and

encoder). By using the encoder's weight matrix W1, bias vector b1, and element-wise sigmoid

activation function, the input x between [0, 1]d may be transformed to the desired output x[0, 1].

The encoded component of AEs (code), latent variables, or latent representation is represented by

the output h. Using the inverse of function f(x), known as function g(h), the reconstruction of

output r is achieved (where W2 indicates the weight matrix of the decoder, b2 denotes the bias

vector of the decoder, and 2 denotes the element-wise sigmoid activation function of the decoder).

In the literature, AEs have been utilized for a variety of tasks, including feature extraction and

dimensionality reduction.

AEs are a subset of FFNNs that have been further refined. The updating of the weights in

the network is accomplished by the use of backpropagation learning. The learning process of AEs

is aided by the use of optimization algorithms (SGD, RMSProp, and ADAM). In AEs, the MSE

loss function is utilized as a loss function. In addition, recirculation algorithms may be employed

to train the AEs over the course of the experiment. The hyperparameters of AEs are quite similar

to the hyperparameters of DLs. A number of parameters, including the learning rate, weight-cost

(decay rate), dropout fraction, batch size (minibatch size), number of epochs, layer count, number

of nodes in each encoder layer, type of activation functions, number of nodes in each decoder

layer, network weight initialization, optimization algorithms, and the number of nodes in the code

layer (size of latent representation), is controlled by AEs. Similar to the other deep networks, the

hyperparameters are searched for using the MS, GS, RS, and Bayesian approaches, as well as other

deep network techniques.

Deep Reinforcement Learning (DRL)

In contrast to the supervised and unsupervised learning models, reinforcement learning is

a sort of learning strategy that uses positive reinforcement to motivate students to learn. It is not

38

necessary to have a preliminary data collection that has been tagged or clustered before. RL is a

machine learning technique that is inspired by learning action/behavior. It is concerned with

determining which actions should be made by subjects in order to gain the largest reward possible

in a given environment. It is utilized in a variety of application fields, including game theory,

control theory, multi-agent systems, operations research, robotics, information theory, portfolio

management, simulation-based optimization, Atari gameplay, and statistics. Some of the benefits

of employing RL for control issues include the ease with which an agent can be re-trained to

respond to changes in the environment and the fact that the system is continuously enhanced while

training is being done on a continuous basis. It is via contact with its environment and observation

of the effects of these interactions that a real-time agent learns. This learning approach is based on

the fundamental manner in which individuals learn.

The Markov Decision Process (MDP) is the foundation of RL (MDP). MDP is used to

codify the RL environment in a standardized manner. State transition probability matrix (p(s 0, r|s,

a), where s 0 denotes the next state, r denotes the reward function, the reward function is denoted

by the state, and the action is denoted by the action), discount factor (the present value of future

rewards), and discount factor (the present value of future rewards). The agent's goal is to maximize

the total amount of money he or she receives.

The range of RL solutions and methodologies available in the literature is just too extensive

to cover in detail in this work. As a result, RL concerns are only briefly discussed. Model-based

techniques and model-free methods are the two primary categories of RL approaches. Model-based

methods are those that use a model to solve the problem. The model-based strategy makes use of

a model that the agent has already encountered, as well as value/policy and experience. The

experience might be actual (a sample taken from the environment) or simulated (a sample taken

from the environment) (sample from the model). For the most part, model-based approaches are

used in the application of robotics and control algorithms. Model-free approaches may be

classified into two categories: value-based methods and policy-based methods. Value-based

methods are those that are based on values. If you use a value-based approach, the policy is

generated straight from the value function. If you use a policy-based approach, the policy is

explicitly parameterized. There are three basic solutions for MDP issues in value-based methods:

Dynamic Programming (DP), Monte Carlo (MC), and Temporal Difference (TD).

39

Recurrent Neural Network (RNN) Theory

A further sort of DL network is the RNN, which is utilized for time series or sequential

data, like language or voice. Even though standard machine learning models (such as Back

Propagation Through Time (BPTT) and Jordan-Elman networks, among others) use RNNs, the

time duration of these models is often shorter than those of deep RNNs. It is preferable to use deep

RNNs since they have the capability of including longer time periods. Instead of using external

memory to process incoming inputs, Reinforcement Learning Neural Networks (RNNs) make use

of internal memory. RNNs are utilized in a variety of disciplines, including handwriting

recognition, voice recognition, and others, to analyze time-series data. The research states that

RNNs are effective for predicting the next character in a text, language translation applications,

and sequential data processing.

In each layer of the RNN model architecture, there are a variable number of layers with a

different sort of unit in them. Because each RNN unit takes in both the current and past input data

at the same time, there is a significant difference between RNN and FNN in terms of performance.

The output of the RNN model is dependent on the preceding data. During the course of their

operation, the RNNs process the input sequences one by one at any given moment. They store

information about the history of the input in the state vector in the units on the hidden layer of the

hidden layer. DMLP is created by dividing the output of the units in the hidden layer into distinct

discrete time steps and converting the RNNs into DMLPs in the process.

Training RNNs may be accomplished via the use of the BPTT method. Weight adjustment

algorithms are employed in the process of adjusting the weight. Because of this, while using the

BPTT learning approach, the error change at any given time is reflected in the input and weights

of the subsequent t times. This is owing to the fact that the RNN structure has a backward reliance

over time, which makes it difficult to train RNN models. As a result, when it comes to the learning

stage, RNNs become very complicated. However, despite the fact that the primary goal of utilizing

RNN is to learn long-term dependencies, research in the literature has shown that when

information is held for extended periods of time, it is difficult to learn using RNN. The

development of LSTMs with various ANN architectures was undertaken in order to address this

specific difficulty.

The recurrent neural network is categorized in the class of artificial neural network. It uses

the technology from the feedforward and it can use internal state memory in processing the

40

variable-length sequences of inputs. Sherstinsky (2020) says that in RNN, the connection between

the two nodes forms a direct graph along the temporal line; and it’s this characteristic that allows

it to create a unique material behavior. Research made by Yin et al (2017) shows that the RNN

can run arbitrary programs to process random input considering they are Turing complete. RNN

is significant in society today, and it's used in various areas such as speech recognition, connected

handwriting recognition, and unsegmented. Li et al (2018) research identifies the RNN in two main

classes: finite impulse and infinite impulse, and they all have the same function in that they release

temporal dynamic behaviors. In his studies, these two classes FIR and IIR, have additional stored

states, and a neural network directly controls the storage. Any network or graph can replace the

warehouse when there is a delay in time or feedback loops. The entire controlled state is known as

gated memory or gated state. The RNN network was discovered in the late 1980s and became

famous in the early 1990s when it solved a deep learning task.

According to Weiss et al (2018) research notes that finite impulse RNN is a directed acyclic

graph and it can be unrolled or replaced with a feedforward neural network. The finite impulse

settles at zero finite time in response to the finite-length input of any limited time. The finite

inspiration can be digital or analog and simultaneously be with a continuous-time or discrete.

Weiss et al (2018) research in his study of Infinite in precision, he states the properties which the

finite impulse has that have made it useful in the current generation. The FIR doesn't require

feedback, and a summed iteration does not compound any rounding error. Besides, the same

relative error is in the calculation, making its implementation easier and simpler. It is inherently

stable, and it can efficiently be designed into a linear phase by making the co-efficient sequence

symmetric. FIR is designed by matching the filter orders and co-efficient, which meets given

specifications in the time and frequency domains. Several designs are used when a specific

frequency response is needed, such as window design, frequency sampling methods, mean square

error, and optimal way. On the other hand, infinite impulse response doesn’t go to zero when it

passes a given point; instead, it continues indefinitely. Merrill et al (2020) assert that it is a directed

cyclic graph that can’t be unrolled. The approach is used in several linear time-invariant systems,

such as in digital filters and electronics. The analog electronic filters use IIR technology. The

transfer function IIR lets a person know whether the system is bounded input or bounded output

stable. Its stability requires the ROC of the system, such as the unit circle.

41

 Further, Shen et al (2018) research states that RNN is an artificial neural network that uses

time-series data or sequential data. Deep learning algorithms are mainly used in solving temporal

or ordinal problems. They are placed in typical applications such as voice search, google translate,

and Siri. The RNN utilizes the training data to learn just like another artificial neural network does.

However, they are different from others based on their memory, and they take information from

the previous input to influence the present input and output. These works are different from the

traditional deep neural networks input, which believes that the information and the result are

independent (Karita et al, 2019). In this case, the RNN output relies on the previous elements in

the sequence. Language and speech recognition have used the technique to get the desired results,

which explains why the method is actively used in forecasting.

In the application, the RNN accounts for each word in the idiom, and it uses the same

information to predict the next possible word in the sequence. Shin et al (2017) note that the rolled

RNN represents the entire neural network, the whole indicated phrase. In contrast, the unrolled in

the visual represents a single time step or layer of the neural network, and each layer matches a

single word, and the previous inputs are hidden. Moreover, RNN shares parameters across each

layer of the network. Miao et al (2015) state that the RNN has the same weight parameter within

each network layer, unlike the feedforward network, which has different weights across each node.

However, The RNN weight is adjusted through a gradient descent process and

backpropagation to enhance reinforcement learning. The RNN uses the principle of the

backpropagation that's BPTT to find out the gradients, and their approach is different from the

traditional way, which is specific to sequence data (Manaswi, 2018). The system has trained itself

in calculating errors from its output to input layers, and the calculations give room for adjustment

and fit the parameter in the model effectively. The BPTT sums errors in each step differently from

feedforward, which doesn't add mistakes because they don't share parameters across each layer.

The RNNs are of different types because different RNNs are used for other purposes. The RNNs

are expressed as One to one, one to many, many to one, many to many, and many to many.

 The RNN deals with two main problems that are exploding gradients and vanishing

gradients. They are the size of the angle along the error curve, which is the slope of the loss

function. When the incline is slight, they continue reducing to smaller as it updates the parameters

weight until it becomes insignificant zero; when that happens, the algorithm stops learning (Liu et

al, 2020). The exploding gradients happen when the angle is considerable and creates an unstable

42

model. That means the weight will be too large and represented with NaN. To solve this is to

minimize the number of hidden layers in the neural network and remove some of the complexity

in RNN.

Recurrent Neural Network (RNN) Forecasting Research

The financial market doesn’t allow simple models to predict the future; therefore, using

high accuracy and quality model brings reliable results. RNN has proved to be helpful in data

sequential analysis. In forecasting, no data remain permanent, and it tends to change with time.

When the RNN is familiar with the change in data, then prediction becomes more accessible. The

neural networks have received a higher advantage in the forecasting of financial data series (Qin

et al, 2017). There are several classical methods used, such as ARIMA and Box-Jenkins; however,

RNNs have the advantage over them because they can approximate the non-linear functions.

Forecasting works well where the prediction technique is identified. Gallicchio et al (2018)

explore the effects of epochs and several neurons available in the time series prediction. The

study's main aim was to find out the practical approach to predicting the best results in the financial

market. The findings showed that the fewer epochs don’t provide RNN learning. The number of

neurons plays a significant role in setting the recurrent neural network learning process. A large

number of neurons generates stunning prediction results. However, for this to be successful, it

needs more training and time.

The neural network has helped apply signal processing, and the same method is employed

in predicting daily foreign exchange rates. In predicting the noisy time-series data, the RNNs are

preferred because they have feedback connections and the ability to represent a given

computational structure effectively. RNN focuses on the temporal relationship of the input and

thus maintaining the internal state. Besides, they are less subjected to random learning correlation,

which doesn't happen in correlation order. The use of RNN is effective based on its temporal

relationship with series and its modeled through internal states (Tokgöz et al,2018). Besides, it can

get rules from the trained recurrent networks in a deterministic finite-state.

The foreign exchange market is one of the largest markets known in the world today since

its introduction in 1997. The most recognized and valued currency is US dollars. These foreign

exchange rate releases high noise, and are non-stationarity. Most financial investors use quality

prediction algorithms in forecasting (Canizo et al, 2019). In prediction, they use the current

43

percentage which the algorithm predicts from the present day to the future. In this case, RNN is

the best choice because it has connected layers that are a reservoir and this makes RNN have a

short memory and it can capture information about what is calculated. This characteristic is

essential in dealing with complex issues like financial forecasting. The RNN in the forecasting has

successfully managed to minimize the high percentage of test errors which is done through linear

regression.

Long Short-Term Memory (LSTM) Theory

LSTM is a form of RNN in which the network can recall both short and long-term data.

When it comes to complicated tasks such as automated voice recognition and handwritten

character recognition, LSTM networks are the favored option of many DL model developers.

Time-series data is the most common kind of data for which LSTM models are utilized. A variety

of applications, such as Natural Language Processing (NLP), language modeling, language

translation, voice recognition (including sentiment analysis), predictive analytics (including

financial time series analysis), and others make use of this technology. The use of attention

modules and AE structures may improve the performance of LSTM networks when used for time

series data processing, such as language translation. LSTM networks are made up of LSTM units

that communicate with one another. Each LSTM unit combines with the others to produce an

LSTM layer. An LSTM unit is made up of cells that have three gates: an input gate, an output gate,

and a forget gate. The information flow is controlled by three gates. Each cell retains the required

values throughout an arbitrary number of time periods as a result of these qualities.

The LSTM algorithm is a customized version of the RNN. So the weight updates and

recommended optimization approaches are the same in this case. Furthermore, the

hyperparameters of LSTM are the same as those of RNN: the number of hidden layers, the number

of units in each layer, network weight initialization, activation functions, learning rate, momentum

values, the number of epochs, batch size, decay rate, optimization algorithms, sequence length for

LSTM, gradient clipping, gradient normalization, and dropout are all available. The

hyperparameter optimization strategies that are utilized for RNN are equally relevant to LSTM in

order to discover the optimum hyperparameters for the LSTM.

LSTM is used in deep learning, and it's an artificial RNN design. It’s different from

feedforward because it has connections and it can process the whole sequence of data. The research

44

by Xue et al, (2018) states that the LSTM units namely the cell, input gate, output gate, and forget

gate are critical to speech and handwriting recognition. The cell will remember the values over

arbitrary time intervals, whereas the three gates control the flow of the information in and of the

cell. The LSTM network is effective in processing, classifying, and making predictions based on

time series data. Considering there can be lags of unknown duration between important events in

time series. Altché & de La Fortelle (2017) in their studies, assert that the LSTM is developed to

handle the vanishing gradient problem. This is possible when traditional RNNs relative

insensitivity to gap length gives them an advantage over RNNs. Juergen Schmidhuber and

Hochreiter founded LSTM through their passion for artificial intelligence. The LSTM has

primarily contributed to deep learning, and it's currently used by tech heavyweights such as

Facebook, Google, and other significant sites for speech translation. The idea of LSTM was

invented in the 1990s.

Moreover, Tian et al (2018) note that the RNN can't predict the word stored in the long-

term memory, but it gives more accurate predictions from the previous information. When they're

an increase in their RNN, it doesn't provide any efficient performance. The LSTM is good at

retaining information for an extended period. The machine is effective in processing, predicting,

and classifying based on the time-series data. In structure, the LSTM contains four neural networks

with different memory block cells. The information is retained in the cells, and the memory

manipulation is done with gates. In application, the LSTM handles complex problems in different

domains. It is complex in deep learning, and it’s known to overcome technical issues and deliver

quality on the recurrent neural networks. Long-term memory is helpful to have and can solve

several tasks that recurrent neural networks can't solve. It deals with any sequential processing

tasks where the hierarchal decomposition is present, though it does not know the decay. In speech

recognition, the concept supports the recognition and translation of the spoken language into texts

using computers. The approach is known as automatic speech recognition, speech to text, or

computer speech recognition (Zhao et al, 2017). This method needs a combined knowledge of

computer, computer engineering, and linguistics to be successful. Some speech recognition

requires training for a person to have clear information on how to handle it. The training is called

enrollment, where a person speaker reads the information or the isolated texts into the computer

system. The system will analyze the individual voice and recognize the specific voice,

45

Furthermore, the three gates in LSTM are useful, in DiPietro & Hager's (2020) research,

in the forget gate, the information is not helpful in the cell state, and the forget gate removes it.

The two inputs are input at a particular time, and the previous cell output is fed to the gate and

then multiplied by the weight matrices, followed by addition bias. The resultant passes through the

activation function to give binary output. In the input gate, adding helpful information to the cell

state is done by the input gate. The data is managed with sigmoid, and values filtered are

remembered with the same case like forget gate. The output gate is tasked with extracting the

relevant information from the current cell state is presented as at the output in the output gate. The

vector is released by applying the tanh function to the cell. The information is controlled by using

the sigmoid function and filtered by they are remembered using input. The LSTM is good in

capturing long-term temporal dependencies without suffering from optimization issues, they have

been used to solve many difficult tasks (Li et al, 2019). Some of the complex tasks entail

recognizing and generating handwriting, language modeling and translation, acoustic modeling of

speech, and speech synthesis. Besides, it is also used to predict protein secondary structure and

analyze the audio and videos. These are among the few tasks LSTM does. The approach has gained

a lot of popularity in many industries due to its role.

In training, the RNN that uses LSTM and is trained in a supervised method on the set of

training sequences. It uses algorithms such as gradient descent, and it is combined with

backpropagation through time in order to compute the gradient required in the optimization process

(Sherstinsky, 2020). This is necessary for changing the weight of the LSTM network is in line with

the derivative of the error to the corresponding weight. There are many reported success stories of

the training in the non-supervised fashion of RNNs with LSTM units. Most of this training happens

without teachers, and that is known as training labels. However, there is an added advantage of

training LSTM with neuroevolution. Most of the applications use LSTM RNNs and train using a

connectionist temporal classification approach to develop an RNN weight matrix that can

maximize the label sequence probability in the training set. The connectionist temporal

classification approach is effective in recognition and alignment.

Since the introduction of the LSTM in 1997, it has gone through many versions and what

is currently used is more advanced with many valuable features. One of the success stories is with

Bill Gates, who took part to improve artificial intelligence and the development of Open AL

transformed the world. It uses five independent neural networks; however, they are coordinated.

46

A policy gradient trains each network without any supervising teacher, and it has a single layer

(Tian et al, 2018). The LSTM monitors the game and releases actions through action heads. The

Open AL in 2018 trained another LSTM using a gradient policy approach to control a human-like

robot hand that manages the physical objects with un-paralleled capability. Another program, deep

mind, initiated by Alpha-Star, used the LSTM approach to succeed in the complicated video game

Starcraft II. This move has been viewed as a significant transformation in artificial intelligence.

There among many success stories used by this LSTM technology. Even in the medical industry,

they have applied the concept, and it has worked effectively in solving various issues.

Long Short-Term Memory (LSTM) Forecasting Research

LSTM is suitable for forecasting, and several models are effectively used on every specific

time series forecasting problem. This approach was introduced in the 1990s and today is one of

the powerful techniques used in forecasting. LSTM offers many features such as generalization on

memory-based, which gives an advantage over ARIMA and HWES, the commonly known

methods for forecasting. According to the research made by Bouktif et al (2018) in their study on

forecasting, he notes that LSTM is commonly known for natural language processing, and that

makes it more useful in time series forecasting. LSTM comes with a solution that RNNs suffer

from, and that's a short memory. Considering the LSTM has three gates and each with its RNNs,

it is easier to keep, forget or ignore some data points using the probabilistic approach. Besides,

LSTM provides a solution to vanishing and the exploding issues of the gradient. This issue arises

due to continuous weight adjustment as the neural network trains (Chen et al, 2018). It results in

smaller or larger gradients; however, this issue LSTM manages it. This is a powerful technique

highly reliable in the current generation.

Further, with LSTM, the prediction is made, and it is fed into the model so that it can

predict the next value in the sequence. Several errors are introduced into the model whenever the

prediction is made, and they are squashed through sigmoid and tanh activation to prevent the

exploding gradient. The sigmoid function before the gate entry and output.

Financial forecasting is important. From the research made by Yang et al (2020) predicting

data is easy; it involves taking the prepared input data X and using one of Kera's prediction

methods on the loaded model. The input for making the prediction of data X is the only one

affected in the sequence data needed to make the prediction and not the entire training data. The

47

study by Chen et al (2015) emphasizes the LSTM use in making a prediction in the financial stock

market. The prediction of values using this approach has proved to work effectively in the market.

Time series forecasting is part of us in the current world, and predicting the value based on the

previously observed values is the only solution to the problem at hand. Regression analysis with

the help of LSTM gives a reliable answer after testing the relationship between two or more time

series. The time series have natural temporal ordering, and therefore, LSTM is the most preferred

in classifying, processing, and making predictions because it has a delay of unknown time between

the relevant events in the series.

In predicting stock prices, LSTM is powerful and reliable in sequence prediction because

they are able to store past information. This is a crucial matter because the previous price is very

critical in predicting the future price. Predicting the stock price is a process whereby it starts by

loading the dataset, scaling, creating data with timesteps, and then building the LSTM (Zhao et al,

2017). LSTM is used in forecasting because it has large accuracy, and this has increased its demand

by the forecasters. The best decision-making in forecasters in business depends on the best tool

selected for prediction, and the majority goes for LSTM due to its advantage in the market. The

LSTM has the ability to capture data of different seasons since it demands different patterns of

data it can yearly or at intervals of months.

Building LSTM for forecasting requires the use of the Keras approach; it observes a

number of steps first, sequential for initializing the neural network; second, a dense to load the

densely connected neural network layer, an LSTM to add a layer of Long short-term memory; and

finally, a dropout to add dropout layers which will prevent overfitting. Predicting the future stock

when the test set is loaded has a number of procedures it follows, which are very critical (Altché

& de La Fortelle, 2017). Such as merging the training set with the test set at the 0 axes, setting the

time step to 60, and use the minmaxscaler in transforming the new dataset, and finally reshaping

the dataset. When these steps are followed keenly, it leads to a successful prediction of the market

stock price. The result is plotted to compare the real stock price and the predicted stock price, and

it shows some similarities.

Empirical Financial Time Series Forecasting

The forecasting of a specific financial time series, and in particular the forecasting of asset

prices, is the financial application field that has received the greatest attention. Despite the fact

48

that there are various variances, the major emphasis is on anticipating the future movement of the

underlying asset. More than half of the current DL solutions were focused on this particular area

of application. Despite the fact that there are several subtopics of this general problem, such as

stock price forecasting, index prediction, forex price prediction, commodity (oil, gold, etc.) price

prediction, bond price forecasting, volatility forecasting, and cryptocurrency price forecasting, the

underlying dynamics are the same in all of these applications.

The research may also be divided into two primary divisions depending on the projected

outcomes they are intended to produce: price prediction and price movement prediction (trend

prediction). Despite the fact that price forecasting is fundamentally a regression issue, in most

financial time series forecasting applications, the accuracy of the price prediction is not considered

as significant as the accuracy of the directional movement identification. Because of this, experts

regard trend prediction or anticipating which direction the price will move, to be a more important

study topic than accurate price prediction, as opposed to the former. The challenge of trend

prediction is transformed into a classification problem in this way. Only up or down motions are

taken into account in certain research (2-class issue), however, there is also a 3-class problem that

takes into consideration up, down, and neutral movements.

The LSTM and its variants, as well as several hybrid models, are the most often used

models in the financial time series forecasting arena. Because LSTM, by its very nature, makes

use of the temporal properties of any time-series signal, financial time series forecasting is a well-

studied and effective use of LSTM in the financial domain. Although some researchers prefer to

extract appropriate features from the time series, others prefer to transpose the data in such a way

that the resulting financial data becomes stationary from a temporal perspective, i.e. we can still

properly train the model and achieve successful out-of-sample test performance even if the data

order is shuffled. The CNN and Deep Feedforward Neural Network (DFNN) models were the most

often used deep learning models in those implementations.

 Summary

This literature review was created to survey the financial time series field. In particular,

topics focused on forecasting asset prices have their original basis in statistical analysis. The most

popular forecasting method is an autoregressive integrated moving average (ARIMA). The

49

benefits of ARIMA were capturing prior points that predicted future points, seasonal trends, and

an overall trend captured via moving average.

Volatility in finance was another issue and could not be solved with ARIMA alone. Hence,

generalized autoregressive conditional heteroskedasticity (GARCH) was developed to improve the

forecast in highly volatile events.

Machine learning methods became a dominant forecasting tool with the rise of more

significant amounts of data with corresponding computing power. The first widespread successful

machine learning model included support vector machines which learned from non-linear patterns.

Afterward, ensemble methods, combining weak machine learning models to form a stronger one,

such as XGBoost, arose with strong empirical forecasting performance. With even more

technological efficiencies of computing power, deep learning applying neural networks has

surpassed all prior machine learning models in terms of performance and ability to handle more

significant amounts of data. As of the time of this writing, one of these variant neural networks is

Long Short-Term Memory (LSTM), which can retain essential points in a time series to forecast

strong results. In financial time series forecasting, LSTM models are the most used. Financial

time series forecasting is a well-studied and successful usage of LSTM in the economic sphere

because it uses the temporal features of time-series signals. Others choose to transpose the data

such that the resultant financial data is stationary in time. CNN and DFNN were the most often

utilized deep learning models.

50

Chapter 3: Methodology

This chapter describes the research design and methodology performed in the inquiry of

time series forecasting for a semiconductor index with a variant of deep neural networks (LSTMs).

The data analyzed was the SOXX index closing prices from 2009 to 2020. The data was gathered

from Yahoo Finance and was public data, so site permissions were not required. The deep neural

network was coded in Python, specifically within a Jupyter notebook. The study was done with

reproducibility and transparency, so that the respective code will be attached in the appendix. In

particular, the topics included will elaborate on research design, research questions, hypotheses,

population with the sample, role of the researcher, location of research, instrumentation applied,

data collection procedure, data analysis, coding, hypothesis testing, and trustworthiness of the

study.

Research Design

Due to the nature of time series forecasting, this subject will be primarily quantitative. In

this study's scenario, semiconductor practitioners, researchers, and financial experts may employ

the insights from this time series forecasting model for hedging or investing choices. The research

provided here will also contribute as a case study to the continuing debate between the Efficient

Market Hypothesis' grounded theory and the semiconductor forecasting literature.

Since this study will only examine price history data to forecast future prices, an

introductory statement explaining why the forecast occurs is out of scope for this research.

The price history will be split between an in-sample and out-of-sample data. The machine

learning model will only see the in-sample (also known as training data) data, while the future

forecast will be evaluated via out-of-sample data (also known as test data). A qualitative study

would have been more suitable for a question of why or how the forecast works or for explaining

underlying price movements.

For the prior reasons, a quantitative study is most appropriate for this study and applies a

comparative analysis of historical asset prices based on a buy and hold performance over a machine

learning method.

51

The LSTM time series forecast will be constructed by collecting data on daily ETF prices

and analyzing forecasting quality using accuracy over the next day forecast and profitability in

beating the buy and hold performance. In other words, the anticipated production will be examined

using traditional machine learning time-series metrics and compared to the buy and hold strategy

regarding return on investment. More detail on the metrics are found in Appendix E, but typical

time-series metrics include R2, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root

Mean Squared Error (RMSE), and Weighted Mean Absolute Percentage Error (WMAPE). The

data will be obtained through API from Yahoo Finance and saved in a comma-separated file

(CSV). The study will be carried out using the open-source programming language Python.

Python will be used to develop LSTM deep learning models to produce anticipated ETF

prices. Open-source frameworks such as TensorFlow 2 and Pandas data frames will be used.

The benefits of this study allow other researchers and practitioners to examine the

effectiveness of LSTMs on financial asset forecasting. In addition, the semiconductor index

analyzed has higher volatility than other index sectors such as consumer discretionary or utilities.

As a result, other parties may use these findings to refine future machine learning models or even

use the forecast results of these models as another data point to be fed into their larger forecast

model for superior results.

Research Questions

Out of the entire scope of this study, there are three major research questions. The first

question asks how well the forecasting technique performs. The second question asks how well

the forecasts can perform about other strategies concerning investing decisions. The third question

focuses on how much data is required if the forecasts prove fruitful.

Research Question 1: Does LSTM with SOXX prices offer accurate forecasting?

Research Question 2: Can LSTM SOXX daily price forecasts deliver higher returns than a

buy and hold of SOXX?

Research Question 3: How does sample size or training period improve LSTM forecasting

accuracy; can a 20-year example be practical as a 10-year sample?

52

Hypotheses

The hypotheses aim to further drill down from the research questions to distinguish

between a successful or unsuccessful experiment clearly. In this case, the study tests how well an

accurate forecast is, what practical investment benefit LSTM models have against more traditional

methods, and how much daily pricing data is required to maintain a precise prediction. The first

hypothesis aims to evaluate the accuracy of the overall forecast.

The benchmark chosen was forecasting accuracy greater than 50% since anything less

would be worse than random chance or a coin flip in predicting an up or down movement. On a

practical level, forecasting correctly over 50% can give a trader a good advantage, like how a

casino has a slight over 50% advantage in roulette that leads to profit over a large sample. In a

more concrete example, financial products offer one-to-one risk-reward payoffs, so a greater than

50% forecasting accuracy would yield profit in these financial products. The second hypothesis

targets the practical benefit of choosing a more complex model (LSTM) against a more

straightforward strategy. Since more data leads to higher business costs, the final hypothesis

examines how much data is necessary to run the model.

H01: LSTM models do not produce accurate (<=50%) forecasts.

HA1: LSTM models do produce accurate (>50%) forecasts.

H02: LSTM models do not generate higher absolute returns compared to buy and hold.

HA2: LSTM models do generate higher absolute returns compared to buy and hold.

H03: Sample size does not affect LSTM forecasting accuracy.

HA3: Sample size does affect LSTM forecasting accuracy.

Population and Sample

The only data gathered will be SOXX historical price from Yahoo Finance from 2009 to

2020, and the frequency of the data collected will be daily. The sample is representative of the

population of a semiconductor index. Since the data covers over a decade, many different cycles

are captured, including recessions and business cycles. Other researchers may examine the exact

dates from the sample taken to replicate the results performed in this study. In addition, more than

3000 data points are considered due to the time frame of daily closing data. Also, the data is

enough to compare LSTM forecast performance against a less complex buy-and-hold strategy.

53

The characteristic that makes semiconductors interesting is the heightened volatility that makes

forecasting this sector difficult.

Role of the Researcher

The role of the researcher in this study is to act as the primary contributor to synthesize all

the findings from other literature reviews, data collection, data analysis, and formulate a discovery

of whether LSTMs can forecast SOXX prices with a benefit of superior investment performance.

Only one researcher is needed to complete this study since the scope and tasks demanded are

sufficient for a single person.

Geographical or Online Location

The location of the population and sample is an online location since SOXX prices are

reported as public information. The participants in a free market determine the price exchanged

at any particular moment, which means that prices represent market forces. The components that

make up SOXX are 30 semiconductor companies located in various parts of the world.

Procedure

This study does not have human participants and will only gather historical public data.

As stated in previous chapters, this study will only analyze price data of the SOXX index. The

data will be collected via Yahoo Finance API. The API used is yfinance, which applies Python

and Yahoo Finance stock data to be easily gathered into Python coding. In particular, the API will

be used with Python to collect the historical price data. The historical price data includes the price

date on a daily time frame along with the open, high, low, close, and volume. The dates gathered

will range from 01-01-2009 to 12-31-2019.

Once the data is gathered, the prices will be transformed with a scaler to make the data

easier for the LSTM model to process. The scaler applied will be from the Sklearn Python package

commonly used with machine learning. In particular, the scaler used will be MinMaxScaler, which

scales all the values between 0 to 1. Other standard scalars normalize the data, but I wanted to

keep potential outlier data points to see if the LSTM model can notice these complexities for

increased forecasting.

54

Data gathering, model building, and price forecasting will be done with Python. Along

with Python, open-sourced libraries will be used, making performing the price forecasts and

reproducibility more streamlined. Besides the libraries already discussed, other packages include

Numpy, Pandas, Matplotlib, Datetime, and seed. Numpy is for handling matrix calculations,

which apply to forecasting and data preparation. Pandas is to take structured data like Excel or

CSV file data types. Matplotlib enables plotting to be shown, such as pie or line charts. Datetime

aids in the data manipulation for the stock time series data. The Seed package fixes the

randomization functions for others to reproduce the research stated here.

The LSTM model applied will be done with the Tensorflow and Keras packages.

Tensorflow is a package with the LSTM code that can be customized with a higher level code via

Keras. Without Keras, I would have to be more hands-on in the code to operate Tensorflow and

use LSTM financial forecasting properly. The final package will apply the Sklearn metrics

package to enable the use of desired forecasting metrics like RMSE.

Instrumentation

The instruments used in this study will be Python, Jupyter Notebooks, Yahoo Finance API,

and comma-separated files (CSVs). Python will be the coding language used to gather the data

via an application programming interface (API), analyze the data, and perform forecasts. Jupyter

Notebooks will be the coding environment where Python is used for this study. Yahoo Finance

API will be the location where the semiconductor data is gathered. The CSVs will be the database

where the pricing data will be stored. Python with Jupyter Notebooks is an industry and research

option used by many leading companies and researchers. Yahoo Finance is a common location to

gather asset pricing data for free and acceptable research. CSVs are a known storage type for small

structured data such as asset prices of this magnitude.

Pilot Testing

For the pilot testing phase, the study will use S&P 500 (SPY) ETF daily historical data

taken from Yahoo Finance for the years 01-01-2009 to 12-31-2019. The point of this data is to be

very close in terms of the number of data points and data type of the actual research. Only the

closing price will be used for forecasting and handled via Yfinance, Pandas, and Numpy. The data

will be preprocessed with the MinMaxScaler and then sent to the LSTM model created with

55

Tensorflow and Keras. Once the forecast is made, the performance will be evaluated with Sklearn

metrics to see if the metrics calculations perform as expected, along with the estimates plotted with

Matplotlib. The main goal of this test is to have all of the code working without errors. The Python

code will explicitly state the errors, which would hinder the SOXX experiment. Assuming no

errors occur after all of the debugging, the code will be ready to take the SOXX study.

Data Collection

As stated in the instrumentation section, all the data collected will come from the Yahoo

Finance website and be the SOXX index daily pricing data for 2009-2020. The time to gather the

data will take at most a few seconds. Python code will collect the data from Yahoo Finance via

API. This code will be executed within a Jupyter Notebook for ease of use for data analysis later

on. The pricing data will be stored as a CSV, and the CSV will act as a proxy for a database. This

data collection method allows for quick data gathering and ease of analysis since the data analysis

will also be performed with Python and Jupyter Notebooks. This way, the LSTM and other

performance calculations can be done in one location without the need for other more complex

processes. The data collected will cover over ten years of SOXX data (e.g., 2009-2020). This data

will enable the capturing of an entire business cycle, eight years, and the other shorter boom and

bust events in a stock market. Data from 2009 was also taken to capture some recessionary effects

and the other years to capture the bull runs in US equities.

Data Analysis

The predominant form of data analysis will occur after the LSTMs makes the forecast for

comparative performance against a buy and hold strategy. This is due to the fact that the pricing

data of the index has high data quality from Yahoo Finance. In other words, there will be an

expectation of very little transformations required other than checking if all the proper trading days

were recorded. If missing data is found, then an average between the dates will be taken to fill the

missing data point. Once the data is gathered, the LSTM model will train from the majority of the

data and a smaller subsample will be used as the performance against buy and hold. From this

performance comparison, metrics such as return on investment, precision, recall, and accuracy will

be calculated.

56

Descriptive statistics summarize the central tendency, dispersion, and shape of a dataset’s

distribution, excluding NaN (missing) values, which will be applied to the SOXX data. Python

has a function that allows describing the data in terms of count, mean, standard deviation,

minimum value, maximum value, and the interquartile range. These values will aid in describing

the nature and composition of the semiconductor sample taken from the years 2009 to 2020.

The coding for this study is built upon the data collection due to the use of the Yahoo

Finance API. The order of coding will first be the data gathering, which will also store the data

via CSV. After data collection, descriptive statistics will be calculated on the semiconductor index.

Once the statistics and data quality checks are complete, the data will be preprocessed via

standardization for the LSTM model. The analysis will occur in an open-source programming

language called Python. With Python, open-sourced libraries such as TensorFlow 2 and Pandas

data frames will be applied to create LSTM deep learning models that will in turn output forecasted

ETF prices. The forecasted output will be analyzed by conventional machine learning time series

metrics and return on investment compared to a buy and hold strategy.

Triangulation

This study only applied public datasets along with public open source models. The

triangulation did not perform any user interviews. Hence the triangulation used a combination of

data, theory, and researcher reflection with conventional metrics to create reproducible research

that help eliminate and verify against bias.

Informed Consent Process and Ethical Concerns

This research relied exclusively on publicly accessible data and did not include any human

subjects. As a result, no permission was necessary.

Trustworthiness of the Study

This study has a high level of trustworthiness due to the fact the credibility of the findings

and methods can be confirmed by other researchers applying the same process. The model

performance may be transferred to other similar asset prices with similar performance results. The

dependability of the results can be replicated due to fixing the randomization of the stochastic

models with a seed code that will be provided. The seed is a way to fix the random number

57

generator that is commonly used in deep learning model to aid the model in learning the data set

given. In the same light, the code will be available for other researchers to examine, which will

enable full transparency in the methods and findings presented.

Limitations

The stock market contains a large amounts of exchange traded funds, indexes, and even

more stocks from those funds. Semiconductor index analysis data cannot be applied directly to

other types of tradable assets. The volatility profile of other tradable assets differ from asset to

asset and must be evaluated by the researcher or practitioner to adjust their own applications.

Delimitations

This research only applied LSTMs on a semiconductor index. The aim was to examine the

performance of the particular deep learning model on a highly volatile asset to see its forecasting

performance. Other models were not a focus of the study due to not having the wide impact in

time series compared to LSTMs based on latest research at the time of writing this research. In

addition, the semiconductor index has been sector that has not been given much research compared

to more popular assets such as the S&P 500 or Dow Jones Industrial Average.

Summary

This chapter outlines the study concept and methods used to anticipate a semiconductor

index using deep neural networks (LSTMs). The subjects covered research design, research

questions, hypotheses, population and sample, researcher function, research location, equipment

used, data collecting technique, data analysis, coding, hypothesis testing, and study reliability. The

LSTM time series prediction is built using daily ETF price data and industry-standard forecasting

quality metrics. Data will be received from Yahoo Finance through API and stored in a comma-

separated file (CSV). The research will use Python, an open-source programming language. This

study's findings enable other academics and practitioners to evaluate LSTMs for financial asset

forecasting. The semiconductor index is also more volatile than other index categories like

consumer discretionary and utilities. As a consequence, third parties may utilize these insights to

improve future machine learning models or even feed the prediction results into a bigger model

for better outcomes.

58

Chapter 4: Findings

This section examines the LSTM model forecasting performance findings against the

SOXX historical price data. The LSTM model was first applied to the S&P 500 ETF (SPY) before

being applied to SOXX. The model captured the general trend of each asset. The code used was

Python which is attached in the appendix. The LSTM model predicts SOXX daily price

movements with approximately 69% accuracy.

General Description of Participants

The data studied did not include any human participants. The data gathered was the price

history of the iShares Semiconductor index (see Table A1). The dates of the price history data

included the date on a daily time frame with open, high, low, close, and volume is taken from

Yahoo Finance.

 The SOXX is a time series dataset with a total of 4645 days. For this analysis, only date

and close data were analyzed. The dates of data points were from 2001-07-13 to 2019-12-31.

These dates were chosen to capture at least one business cycle and capture many. In this case,

approximately 3.6 business cycles are due to the definition of a business cycle being an average of

4.7 years (Zarnowitz, 1992). Throughout this time series, the US market, according to the S&P

500, has had a total of 18 recessions and corrections (Yardeni Research, 2022).

 Due to the publicly available data, the index time series was clean data and did not require

any transformations for null or missing values. Hence all of the 4645 data points were used for

this study.

Unit of Analysis and Measurement

The unit of analysis is the LSTM model on asset prices. Of course, the model can be

applied to other time series, but this study focuses more on the nuances of the volatile

semiconductor ETF. The unit of measurement of this research project is the forecasting accuracy

of LSTM on time series asset prices. The accuracy is chosen as the significant unit due to the

widespread application of the forecast quality. A higher forecast can lead to better decisions for

59

researchers or more profits for market participants. Other supporting measurements help evaluate

the quality of the model’s prediction.

Sample Size

The sample was taken from the population of the semiconductor index (SOXX). The

sample amount totaled 4645 trading days from the years 2000 to 2019. The sample was large

enough since the period captured two business cycles with many different phases of the market.

Saturation of the data can also be achieved with future researchers or practitioners by taking a

rolling 20-year data sample to their most recent time event.

Pilot Testing

The study pilot-tested the SPY ETF, the same performance as the S&P 500 index. The

data points taken were the same period, frequency, and amount as the SOXX ETF. The LSTM

model ran the untuned version to test that the code was functional. Also, hyperparameter turning

is a very time-consuming event to get the results for one model run. The data did not have any

missing values and was a good test run for the SOXX data due to being very similar in the data

structure.

Data Collection

The data source used was public stock price data collected from Yahoo Finance. Python

has an open-source package that connects to Yahoo Finance via an application programming

interface (API). With an API, stock prices can be gathered programmatically, which results in a

more streamlined analysis in preparation for the LSTM model.

Codebook Creation

The codebook creation was coded in Anaconda, a coding software composed of various

scientific programming tools. Jupyter notebooks was one of those tools, and the code written

inside the notebook was Python. The code contained the Yahoo Finance API, the data preparation,

and the LSTM model with predictions. The supported Python code from the Jupyter Notebook is

attached in the appendix.

60

Qualitative Results

This section explains the primary quantitative results of this LSTM SOXX study. The

daily accuracy of the forecasting model on SOXX was 69%. Removing the transaction costs, this

daily forecast model would have produced a 1,420.70% return instead of 38.93% from buy and

hold of the SOXX ETF. Most practitioners use the S&P 500 buy and hold returns as a benchmark,

21.48%, based on the SPY ETF in the same time frame. The out of sample RMSE was 6. This

value is in line with other results examined during the literature review. The outliers of the dataset

were kept as the goal was for the model to understand the general market for an extended period.

For example, recessions might seem like outlier events but not when taken as a whole in a more

extensive time frame.

Results of Hypothesis Tests

The hypothesis tests were not of the conventional sense of applying p-values but more of

proposal and conjecture. All results are repeatable via the Python code attached in the appendix.

First Hypothesis Test

HA1: LSTM models do produce accurate (>50%) forecasts.

 The LSTM models produced forecasts greater than 50%, which would indicate better

forecasting accuracy than randomly guessing.

Second Hypothesis Test

HA2: LSTM models do generate higher absolute returns in comparison to buy and hold.

 The daily returns applying the forecasted returns without including trading costs resulted

in returns greater than a factor of 10. The returns each day were compounded returns.

Third Hypothesis Test

H03: Sample size does not affect LSTM forecasting accuracy (<= +/-10%).

The study used almost 20 years of data. To test the sample sizing while catching at least

one business cycle, the sample data size was truncated to 10 years to test the performance. From

the 10 year sample size, the LSTM model had similar daily accuracy percentage of 69.48% and,

from a 5 year sample size, the LSTM model had similar daily accuracy percentage of 69.11%.

61

Outliers

All data points were kept, since the goal of this study was for LSTM to generalize SOXX

price history to forecast next day prices. As a result, more data was favored, since that non-

standardized data point may have been more indicative of the overall macro pattern that are

commonly found in business cycles.

Summary

This section compares the results of the LSTM model's predictions to the SOXX's past

price data. Before it was used on SOXX, the LSTM model was first used on the S&P 500 ETF

(SPY). The model showed how each asset was moving in general. Python was used as the code,

which can be found in the appendix. The LSTM model can predict daily changes in the SOXX

price with an accuracy of about 69%. Applying these daily predictions would have yielded a return

of 1,420.70% excluding transaction costs, which are larger over a buy and hold strategy of 38.93%

for the SOXX ETF and a 21.48% return for the SPY ETF during the same time periods.

62

Chapter 5: Concluding the Study

Summary of the Study

LSTM was used to make a model of the iShares Semiconductor ETF (SOXX) stock price

and make predictions about it. The SOXX's historical data were turned into a rolling sequence that

went from the 4180 daily closing prices to an extra 465 daily closing prices that were not in the

sample. Compared to 50 percent random chance, the LSTM model was 19.7 % more accurate at

predicting stock returns than % random chance. The work showed how good LSTM is at predicting

the stock market in SOXX, which is mechanical but less predictable because the results of turning

the hyperparameters are different each time.

Ethical Dimensions

The study applied strict ethical standard in an attempt to show all research done in a

transparent manner. Only public pricing data was used in the whole course of this study.

Overview of the Population and Sampling Method

The entire study with pilot testing used data from 2000 to 2019. The goal was to give the

LSTM model a large number of market cycles to learn from. In this case, two market cycles over

the span of 20 years. The application of training the model against testing its forecast ability was

done with 90% of the 20 year data for training the model and the remaining for out of sample

forecasts. This 90/10 split of sampling data is common for LSTM modeling.

Limitations

Due to using public historical stock price data, the limitations were few. The data was

clean in the sense that there were no missing values and the data points were true. To format the

data for the LSTM model, the closing price data was transformed through MinMax scaling, which

transforms the data points between 0 to 1.

63

Findings

The hypothesis tests were not done in the usual way by using p-values. Instead, they were

more like suggestions and guesses. The Python code in the appendix can be used to get the same

results every time.

Research Question 1: Does LSTM with SOXX prices offer accurate forecasting?

First Hypothesis - Test (HA1): LSTM models do make accurate (>50%) predictions. The

LSTM models made predictions that were more accurate than 50%, which is better than guessing

at random.

Research Question 2: Can LSTM SOXX price forecasts be deliver higher returns than buy

and hold?

Second Hypothesis - Test HA2: LSTM models do produce higher absolute returns than

buy-and-hold strategies. When the predicted returns were used without trading costs, the daily

returns were greater than a factor of 10. The returns each day were returns that added up.

Research Question 3: How sample size or training period LSTM forecasting accuracy?

Third Hypothesis - Test H03: The accuracy of LSTM forecasts (= +/-10%) is not affected

by the size of the sample. The study looked at data from almost 20 years. To test the sample size

and make sure at least one business cycle was caught, the sample data size was cut down to 10

years. From a sample size of 10 years, the LSTM model had a similar daily accuracy of 69.48%,

and from a sample size of 5 years, it had a similar daily accuracy of 69.11%.

Reflection

Before completing this study, I believed that prior stock prices could help predict future

stock prices. Due to working in credit analysis in a bank, historical trends aided in forecasting

future returns. Yet I was unsure how often a model could produce superior returns to standard

financial market benchmarks. To my surprise, the LSTM model acts as a decent forecasting tool

for predicting daily stock prices on the next day. One casual fallacy I had was the need for more

data to predict future prices. Instead of using 20 years’ worth of data, even 5 years proved

64

sufficient to produce accurate daily forecasts. I suspect that macroeconomic trends may have less

of an effect over more recent price history on a daily time frame.

Recommendations

On a practical level, 5-year data would be the best approach. As more data is given to the

LSTM model, a longer training time is needed, which slows down the time for forecasted results.

Analyzing one stock on a daily time frame would not take too long, but every saved minute counts

for superior returns on a larger scale.

Suggestions for Future Research

From other studies in machine learning, ensemble models and combining various machine

learning models into one is generally known to increase performance. I wonder what other

machine learning models can be connected to improve daily forecasting accuracy. In finance, it is

well known that stock prices are affected by other variables not seen in price. I would also like to

add how negative and positive news affects the daily forecasting accuracy taken in conjunction

with the LSTM model.

Concluding the Study

The purpose of this research was to study the predictive power of LSTM models on

forecasting SOXX prices. Prior time series models along with machine learning have shown

promising results but none before was used on the semiconductor ETF. The surprising result came

from the high accuracy of the model along with a superior performance over buy and hold

strategies. For further applications, researchers and practioners may look into combining this

model with various other models or attempt other LSTM neural network architecture.

65

References

Aubry, M., & Renou-Maissant, P. (2014). Semiconductor industry cycles: Explanatory factors and

forecasting. Economic Modelling, 39, 221–231.

https://doi.org/10.1016/j.econmod.2014.02.039

Altché, F., & de La Fortelle, A. (2017, October). An LSTM network for highway trajectory

prediction. In 2017 IEEE 20th International Conference on Intelligent Transportation

Systems (ITSC) (pp. 353-359). IEEE.

Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2016). The great time series

classification bake off: A review and experimental evaluation of recent algorithmic

advances. Data Mining and Knowledge Discovery, 31(3), 606-660. doi:10.1007/s10618-

016-0483-9

Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using

recurrent neural networks on groups of similar series: A clustering approach. Expert

Systems with Applications, 140, 112896. doi:10.1016/j.eswa.2019.112896

BCC Publishing. (2021). Machine learning: Global markets to 2026. Machine Learning Market

Size, Share & Growth Analysis Report. Retrieved March 30, 2022, from

https://www.bccresearch.com/market-research/information-technology/machine-learning-

global-markets.html

Beers, B. (2020, August 29). How a Buy-and-Hold Strategy Works. Retrieved from

https://www.investopedia.com/terms/b/buyandhold.asp

Bhandari, P. (2020, July 30). What is Qualitative Research?: Methods & Examples. Retrieved from

https://www.scribbr.com/methodology/qualitative-research/

Blackrock. (2021). IShares PHLX Semiconductor ETF. Retrieved from

https://www.ishares.com/us/products/239705/ishares-phlx-semiconductor-etf

Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M. A. (2018). Optimal deep learning lstm model for

electric load forecasting using feature selection and genetic algorithm: Comparison with

machine learning approaches. Energies, 11(7), 1636.

Brownlee, J. (2020, August 14). A Gentle Introduction to Autocorrelation and Partial

Autocorrelation. Retrieved from https://machinelearningmastery.com/gentle-introduction-

autocorrelation-partial-autocorrelation/

66

Calvi, G. G., Lucic, V., & Mandic, D. P. (2019, May). Support tensor machine for financial

forecasting. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP) (pp. 8152-8156). IEEE.

Canizo, M., Triguero, I., Conde, A., & Onieva, E. (2019). Multi-head CNN–RNN for multi-time

series anomaly detection: An industrial case study. Neurocomputing, 363, 246-260.

CFI. (2020, November 20). Alpha - Learn How to Calculate and Use Alpha in Investing. Retrieved

from https://corporatefinanceinstitute.com/resources/knowledge/finance/alpha/

Chen, J. (2020, September 28). Exchange Traded Fund – ETFs. Retrieved from

https://www.investopedia.com/terms/e/etf.asp

Chen, K., Zhou, Y., & Dai, F. (2015, October). A LSTM-based method for stock returns

prediction: A case study of China stock market. In 2015 IEEE international conference on

big data (big data) (pp. 2823-2824). IEEE.

Chen, W., Pourghasemi, H. R., Kornejady, A., & Zhang, N. (2017). Landslide spatial modeling:

Introducing new ensembles of ANN, MaxEnt, and SVM machine learning

techniques. Geoderma, 305, 314-327.

Christoffersen, P., Jacobs, K., & Ornthanalai, C. (2013). GARCH option valuation: theory and

evidence. The Journal of Derivatives, 21(2), 8-41.

Corrêa, J. M., Neto, A. C., Júnior, L. T., Franco, E. M. C., & Faria Jr, A. E. (2016). Time series

forecasting with the WARIMAX-GARCH method. Neurocomputing, 216, 805-815.

Dai, S., Niu, D., & Li, Y. (2018). Daily peak load forecasting based on complete ensemble

empirical mode decomposition with adaptive noise and support vector machine optimized

by modified grey wolf optimization algorithm. Energies, 11(1), 163.

Deng, W., Yao, R., Zhao, H., Yang, X., & Li, G. (2019). A novel intelligent diagnosis method

using optimal LS-SVM with improved PSO algorithm. Soft Computing, 23(7), 2445-2462.

DiPietro, R., & Hager, G. D. (2020). Deep learning: RNNs and LSTM. In Handbook of medical

image computing and computer assisted intervention (pp. 503-519). Academic Press.

Dong, W., Huang, Y., Lehane, B., & Ma, G. (2020). XGBoost algorithm-based prediction of

concrete electrical resistivity for structural health monitoring. Automation in

Construction, 114, 103155.

67

Du, Y. (2018, June). Application and analysis of forecasting stock price index based on a

combination of ARIMA model and BP neural network. In 2018 Chinese Control And

Decision Conference (CCDC) (pp. 2854-2857). IEEE.

Duan, Y., Yisheng, L. V., & Wang, F. Y. (2016, November). Travel time prediction with LSTM

neural network. In 2016 IEEE 19th international conference on intelligent transportation

systems (ITSC) (pp. 1053-1058). IEEE.

Dutta, A. (2014) Modelling Volatility: Symmetric or Asymmetric GARCH Models? Journal of

Statistics: Advances in Theory and Applications, 12, 99-108

Fattah, J., Ezzine, L., Aman, Z., El Moussami, H., & Lachhab, A. (2018). Forecasting of demand

using ARIMA model. International Journal of Engineering Business Management, 10,

1847979018808673.

Gallicchio, C., Micheli, A., & Pedrelli, L. (2018). Comparison between DeepESNs and gated

RNNs on multivariate time-series prediction. arXiv preprint arXiv:1812.11527.

Geeksforgeeks. (n.d.). Python: Pandas DataFrame. Retrieved from

https://www.geeksforgeeks.org/python-pandas-dataframe/

Gong, X., Si, Y. W., Fong, S., & Biuk-Aghai, R. P. (2016). Financial time series pattern matching

with extended UCR suite and support vector machine. Expert Systems with

Applications, 55, 284-296.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A

search space odyssey. IEEE transactions on neural networks and learning systems, 28(10),

2222-2232.

Gumelar, A. B., Setyorini, H., Adi, D. P., Nilowardono, S., Widodo, A., Wibowo, A. T., ... &

Christine, E. (2020, September). Boosting the Accuracy of Stock Market Prediction using

XGBoost and Long Short-Term Memory. In 2020 International Seminar on Application

for Technology of Information and Communication (iSemantic) (pp. 609-613). IEEE.

Hargrave, M. (2020, December 14). How Deep Learning Can Help Prevent Financial Fraud.

Retrieved from https://www.investopedia.com/terms/d/deep-learning.asp#:~:text=Deep

learning is an AI,is both unstructured and unlabeled.

Harvey, A., & Sucarrat, G. (2014). EGARCH models with fat tails, skewness and

leverage. Computational Statistics & Data Analysis, 76, 320-338.

68

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9,

1735–1780.

Hyndman, R. J., Koehler, A. B., Leeds, M., Ord, J. K., & Snyder, R. D. (2005). Time series

forecasting: The case for the single source of error state space. , Vic.

Idrees, S. M., Alam, M. A., & Agarwal, P. (2019). A prediction approach for stock market

volatility based on time series data. IEEE Access, 7, 17287-17298.

Jabeur, S. B., Mefteh-Wali, S., & Viviani, J. L. (2021). Forecasting gold price with the XGBoost

algorithm and SHAP interaction values. Annals of Operations Research, 1-21.

Jackson, E. A., Sillah, A., & Tamuke, E. (2018). Modelling monthly headline consumer price

index (HCPI) through seasonal Box-Jenkins methodology. International Journal of

Sciences, 7(01), 51-56.

Jaramillo, J., Velasquez, J. D., & Franco, C. J. (2017). Research in financial time series forecasting

with SVM: Contributions from literature. IEEE Latin America Transactions, 15(1), 145-

153.

Javed, F., & Mantalos, P. (2013). GARCH-type models and performance of information

criteria. Communications in Statistics-Simulation and Computation, 42(8), 1917-1933.

Junior, P. R., Salomon, F. L. R., & de Oliveira Pamplona, E. (2014). ARIMA: An applied time

series forecasting model for the Bovespa stock index. Applied Mathematics, 5(21), 3383.

Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A., & Mansor, S. (2018). Assessment of the

effects of training data selection on the landslide susceptibility mapping: a comparison

between support vector machine (SVM), logistic regression (LR) and artificial neural

networks (ANN). Geomatics, Natural Hazards and Risk, 9(1), 49-69.

Karita, S., Chen, N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., ... & Zhang, W. (2019,

December). A comparative study on transformer vs rnn in speech applications. In 2019

IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) (pp. 449-

456). IEEE.

Kewat, P., Sharma, R., Singh, U., & Itare, R. (2017, April). Support vector machines through

financial time series forecasting. In 2017 International conference of Electronics,

Communication and Aerospace Technology (ICECA) (Vol. 2, pp. 471-477). IEEE.

69

Khairalla, M. A., & Ning, X. (2017, October). Financial Time Series Forecasting Using Hybridized

Support Vector Machines and ARIMA Models. In Proceedings of the 2017 International

Conference on Wireless Communications, Networking and Applications (pp. 94-98).

Khalil, K., Eldash, O., Kumar, A., & Bayoumi, M. (2019). Economic LSTM approach for recurrent

neural networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(11),

1885-1889.

Kong, W., Dong, Z. Y., Jia, Y., Hill, D. J., Xu, Y., & Zhang, Y. (2017). Short-term residential load

forecasting based on LSTM recurrent neural network. IEEE Transactions on Smart

Grid, 10(1), 841-851.

Kumar, M., & Thenmozhi, M. (2014). Forecasting stock index returns using ARIMA-SVM,

ARIMA-ANN, and ARIMA-random forest hybrid models. International Journal of

Banking, Accounting and Finance, 5(3), 284-308.

Li, S., & Zhang, X. (2020). Research on orthopedic auxiliary classification and prediction model

based on XGBoost algorithm. Neural Computing and Applications, 32(7), 1971-1979.

Li, S., Li, W., Cook, C., Zhu, C., & Gao, Y. (2018). Independently recurrent neural network

(indrnn): Building a longer and deeper rnn. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 5457-5466).

Li, W., Yin, Y., Quan, X., & Zhang, H. (2019). Gene expression value prediction based on

XGBoost algorithm. Frontiers in genetics, 10, 1077.

Li, Y., Zhu, Z., Kong, D., Han, H., & Zhao, Y. (2019). EA-LSTM: Evolutionary attention-based

LSTM for time series prediction. Knowledge-Based Systems, 181, 104785.

Lim, C. M., & Sek, S. K. (2013). Comparing the performances of GARCH-type models in

capturing the stock market volatility in Malaysia. Procedia Economics and Finance, 5, 478-

487.

Liu, R., & Yang, L. (2016). Spline estimation of a semiparametric GARCH model. Econometric

Theory, 32(4), 1023-1054.

Liu, W., & Chyi, Y. (2006). A Markov regime-switching model for the semiconductor industry

cycles. Economic Modelling, 23(4), 569-578. doi:10.1016/j.econmod.2006.02.007

Liu, Y., Gong, C., Yang, L., & Chen, Y. (2020). DSTP-RNN: A dual-stage two-phase attention-

based recurrent neural network for long-term and multivariate time series

prediction. Expert Systems with Applications, 143, 113082.

70

Maciel, L., Gomide, F., & Ballini, R. (2016). Evolving fuzzy-GARCH approach for financial

volatility modeling and forecasting. Computational Economics, 48(3), 379-398.

Manaswi, N. K. (2018). Rnn and lstm. In Deep Learning with Applications Using Python (pp. 115-

126). Apress, Berkeley, CA.

Manavalan, B., Shin, T. H., & Lee, G. (2018). PVP-SVM: sequence-based prediction of phage

virion proteins using a support vector machine. Frontiers in microbiology, 9, 476.

Mehtab, S., & Sen, J. (2020). Stock Price Prediction Using CNN and LSTM-Based Deep Learning

Models. 2020 International Conference on Decision Aid Sciences and Application

(DASA). doi:10.1109/dasa51403.2020.9317207

Merrill, W., Weiss, G., Goldberg, Y., Schwartz, R., Smith, N. A., & Yahav, E. (2020). A formal

hierarchy of RNN architectures. arXiv preprint arXiv:2004.08500.

Miao, Y., Gowayyed, M., & Metze, F. (2015, December). EESEN: End-to-end speech recognition

using deep RNN models and WFST-based decoding. In 2015 IEEE Workshop on

Automatic Speech Recognition and Understanding (ASRU) (pp. 167-174). IEEE.

Mitchell, R., & Frank, E. (2017). Accelerating the XGBoost algorithm using GPU

computing. PeerJ Computer Science, 3, e127.

Mo, H., Sun, H., Liu, J., & Wei, S. (2019). Developing window behavior models for residential

buildings using XGBoost algorithm. Energy and Buildings, 205, 109564.

Nava, N., Di Matteo, T., & Aste, T. (2018). Financial time series forecasting using empirical mode

decomposition and support vector regression. Risks, 6(1), 7.

Ninja, F. (2019, February 09). Data Confirms Grim Truth: 70-80% of Retail Traders are

Unprofitable. Retrieved from https://www.babypips.com/news/almost-80-percent-of-

retail-traders-are-unprofitable

Okasha, M. K. (2014). Using support vector machines in financial time series

forecasting. International Journal of Statistics and Applications, 4(1), 28-39

Paliari, I., Karanikola, A., & Kotsiantis, S. (2021, July). A comparison of the optimized LSTM,

XGBOOST and ARIMA in Time Series forecasting. In 2021 12th International Conference

on Information, Intelligence, Systems & Applications (IISA) (pp. 1-7). IEEE.

Pan, B. (2018, February). Application of XGBoost algorithm in hourly PM2. 5 concentration

prediction. In IOP conference series: Earth and environmental science (Vol. 113, No. 1, p.

012127). IOP publishing.

71

Panait, I., & Slavescu, E. O. (2012). Using GARCH-IN-mean model to investigate volatility and

persistence at different frequencies for Bucharest Stock Exchange during 1997-

2012. Theoretical & Applied Economics, 19(5).

Pyo, S., Lee, J., Cha, M., & Jang, H. (2017). Predictability of machine learning techniques to

forecast the trends of market index prices: Hypothesis testing for the Korean stock

markets. PloS one, 12(11), e0188107.

Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., & Cottrell, G. (2017). A dual-stage attention-

based recurrent neural network for time series prediction. arXiv preprint

arXiv:1704.02971.

Rapidapi. (2020, February 06). What is an API Call? (API Call Definition): API Glossary.

Retrieved from https://rapidapi.com/blog/api-glossary/api-call/

Reider, N., & Fodor, G. (2012). A distributed power control and mode selection algorithm for D2D

communications. EURASIP Journal on Wireless Communications and

Networking, 2012(1), 1-25.

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with

deep learning: A systematic literature review: 2005–2019. Applied Soft Computing, 90,

106181.

Shen, J., Shafiq, M.O. (2020). Short-term stock market price trend prediction using a

comprehensive deep learning system. Journal of Big Data. doi.org/10.1186/s40537-020-

00333-6

Shen, T., Zhou, T., Long, G., Jiang, J., Pan, S., & Zhang, C. (2018, April). Disan: Directional self-

attention network for rnn/cnn-free language understanding. In Proceedings of the AAAI

conference on artificial intelligence (Vol. 32, No. 1).

Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term

memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.

Shin, D., Lee, J., Lee, J., & Yoo, H. J. (2017, February). 14.2 DNPU: An 8.1 TOPS/W

reconfigurable CNN-RNN processor for general-purpose deep neural networks. In 2017

IEEE International Solid-State Circuits Conference (ISSCC) (pp. 240-241). IEEE.

Siami-Namini, S., & Namin, A. S. (2018). Forecasting economics and financial time series:

ARIMA vs. LSTM. arXiv preprint arXiv:1803.06386.

72

Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2018, December). A comparison of ARIMA and

LSTM in forecasting time series. In 2018 17th IEEE International Conference on Machine

Learning and Applications (ICMLA) (pp. 1394-1401). IEEE.

Smith, T. (2020, September 16). Autocorrelation. Retrieved from

https://www.investopedia.com/terms/a/autocorrelation.asp

Snipes, M., & Taylor, D. C. (2014). Model selection and Akaike Information Criteria: An example

from wine ratings and prices. Wine Economics and Policy, 3(1), 3-9.

Su, Z., Xie, H., & Han, L. (2020). Multi-Factor RFG-LSTM Algorithm for Stock Sequence

Predicting. Computational Economics. doi:10.1007/s10614-020-10008-2

Sun, S., Wei, Y., & Wang, S. (2018, June). AdaBoost-LSTM ensemble learning for financial time

series forecasting. In International Conference on Computational Science (pp. 590-597).

Springer, Cham.

Tao, P., Sun, Z., & Sun, Z. (2018). An improved intrusion detection algorithm based on GA and

SVM. Ieee Access, 6, 13624-13631.

Tian, Y., Zhang, K., Li, J., Lin, X., & Yang, B. (2018). LSTM-based traffic flow prediction with

missing data. Neurocomputing, 318, 297-305.

Ţiţan, A. G. (2015). The Efficient Market Hypothesis: Review of Specialized Literature and

Empirical Research. Procedia Economics and Finance, 32, 442-449. doi:10.1016/s2212-

5671(15)01416-1

Tokgöz, A., & Ünal, G. (2018, May). A RNN based time series approach for forecasting turkish

electricity load. In 2018 26th Signal Processing and Communications Applications

Conference (SIU) (pp. 1-4). IEEE.

Varatharajan, R., Manogaran, G., & Priyan, M. K. (2018). A big data classification approach using

LDA with an enhanced SVM method for ECG signals in cloud computing. Multimedia

Tools and Applications, 77(8), 10195-10215.

Venna, Siva RamaKrishna Reddy & Tavanaei, Amirhossein & Gottumukkala, Raju & Raghavan,

Vijay & Maida, Anthony & Nichols, Stephen. (2018). A Novel Data-Driven Model for

Real-Time Influenza Forecasting. IEEE Access. 10.1109/ACCESS.2018.2888585.

Walter, M., & Andersen, C. (2016). Indigenous Statistics: A quantitative research methodology.

Routledge.

73

Wang, Y., & Guo, Y. (2020). Forecasting method of stock market volatility in time series data

based on a mixed model of ARIMA and XGBoost. China Communications, 17(3), 205-

221.

Wang, Y., Xiang, Y., Lei, X., & Zhou, Y. (2021). Volatility analysis based on GARCH-type

models: Evidence from the Chinese stock market. Economic Research-Ekonomska

Istraživanja, 1-25.

Weiss, G., Goldberg, Y., & Yahav, E. (2018). On the practical computational power of finite

precision rnns for language recognition. arXiv preprint arXiv:1805.04908.

Weng, B., Martinez, W., Tsai, Y., Li, C., Lu, L., Barth, J. R., & Megahed, F. M. (2018).

Macroeconomic indicators alone can predict the monthly closing price of major U.S.

indices: Insights from artificial intelligence, time-series analysis and hybrid

models. Applied Soft Computing, 71, 685-697. doi:10.1016/j.asoc.2018.07.024

Wetering, S. V. (2020, November 13). Why Do Hedge Funds Fail? Blame Poor Operations

Management. Retrieved from https://www.empaxis.com/blog/reasons-hedge-funds-fail

Xiao, C., Xia, W., & Jiang, J. (2020). Stock price forecast based on combined model of ARI-MA-

LS-SVM. Neural Computing and Applications, 32(10), 5379-5388.

Xue, H., Huynh, D. Q., & Reynolds, M. (2018, March). SS-LSTM: A hierarchical LSTM model

for pedestrian trajectory prediction. In 2018 IEEE Winter Conference on Applications of

Computer Vision (WACV) (pp. 1186-1194). IEEE.

Yang, R., Singh, S. K., Tavakkoli, M., Amiri, N., Yang, Y., Karami, M. A., & Rai, R. (2020).

CNN-LSTM deep learning architecture for computer vision-based modal frequency

detection. Mechanical Systems and signal processing, 144, 106885.

Yin, W., Kann, K., Yu, M., & Schütze, H. (2017). Comparative study of CNN and RNN for natural

language processing. arXiv preprint arXiv:1702.01923.

Yu, W., Kim, I. Y., & Mechefske, C. (2021). Analysis of different RNN autoencoder variants for

time series classification and machine prognostics. Mechanical Systems and Signal

Processing, 149, 107322.

Yuan, G., Zhang, T., Zhang, W., & Li, H. (2021, August). Analysis of Stock Price Based On the

XGBoost Algorithm With EMA-19 and SMA-15 Features. In 2021 IEEE International

Conference on Computer Science, Artificial Intelligence and Electronic Engineering

(CSAIEE) (pp. 1-4). IEEE.

74

Yucong, W., & Bo, W. (2020, April). Research on EA-xgboost hybrid model for building energy

prediction. In Journal of Physics: Conference Series (Vol. 1518, No. 1, p. 012082). IOP

Publishing.

Zhang, L., Zhu, G., Mei, L., Shen, P., Shah, S. A. A., & Bennamoun, M. (2018, December).

Attention in convolutional LSTM for gesture recognition. In Proceedings of the 32nd

International Conference on Neural Information Processing Systems (pp. 1957-1966).

Zhang, R., Li, B., & Jiao, B. (2019, April). Application of XGboost algorithm in bearing fault

diagnosis. In IOP Conference Series: Materials Science and Engineering (Vol. 490, No. 7,

p. 072062). IOP Publishing.

Zhang, X., Liang, X., Zhiyuli, A., Zhang, S., Xu, R., & Wu, B. (2019, July). AT-LSTM: An

attention-based LSTM model for financial time series prediction. In IOP Conference

Series: Materials Science and Engineering (Vol. 569, No. 5, p. 052037). IOP Publishing

Zhao, Z., Chen, W., Wu, X., Chen, P. C., & Liu, J. (2017). LSTM network: a deep learning

approach for short-term traffic forecast. IET Intelligent Transport Systems, 11(2), 68-75.

Zheng, H., Yuan, J., & Chen, L. (2017). Short-term load forecasting using EMD-LSTM neural

networks with a Xgboost algorithm for feature importance evaluation. Energies, 10(8),

1168.

Zhou, Y., Li, T., Shi, J., & Qian, Z. (2019). A CEEMDAN and XGBOOST-based approach to

forecast crude oil prices. Complexity, 2019.

75

Appendix A: Tables

Table A1

Notes. The table above is a snapshot of the price history of the semiconductor index used from

Yahoo Finance for the time series study.

76

Table A2

Notes. The table above is a snapshot of the price history of the S&P 500 ETF (SPY) used from

Yahoo Finance for the pilot study.

77

Appendix B: Figures

Figure B1

LSTM model applied on SPY ETF from 2000-01-03 to 2019-12-30.

Notes. The blue line is the historical price history of the SPY. The orange line is the performance

of the LSTM model on training data. The green line is the out of sample forecast of the LSTM

model, which would be the true out of sample forecast.

Figure B2

LSTM model applied on SOXX index from 2001-07-13 to 2019-12-30.

78

Notes. The blue line is the historical price history of the SOXX. The orange line is the performance

of the LSTM model on training data. The green line is the out of sample forecast of the LSTM

model, which would be the true out of sample forecast.

79

Appendix C: Instruments

Anaconda was used to process the data and develop the time series models. Anaconda is an open-

source distribution of the Python and R programming languages for scientific computing. Within

Anaconda, the Python programming languages were applied with Jupyter Notebooks, an integrated

development environment. To further speed the creation of the time series models, Google's open-

sourced Tensorflow package was used for machine learning purposes such as making deep neural

networks for time series.

The CSV data points taken from Python and Yahoo Finance via Yfinance will have the headers

Date, Open, High, Low, Close, Volume, and Adj Close. Sample data points from Yfinance below:

80

Appendix D: IRB Approvals and Consent Form

Consent Form

Since this study did not use human participants, no consent forms were needed.

Statement of Consent

No statements of consent were required for this study.

Participant Bill of Rights

No participants were used in this study.

81

Appendix E: List of industry standard measures

● R2 is used to figure out how the predicted value compares to the actual value.

Where SSres is the total squared residuals from the expected values and SStot is the total

squared deviations from the sample mean of the dependent variable. It shows how much

of the variation in the dependent variable can be explained by the variation in the

independent variable. A high R2 value shows that the model's variance is similar to that of

the real values, while a low R2 value shows that the two values are not strongly related.

The most important thing to remember about R-squared is that it does not show if the model

can accurately predict what will happen in the future. It shows whether or not the model

fits well with the observed values and how well it fits. When the R2 is high, it means that

the values that were seen and those that were expected are strongly related.

● When absolute error must be measured, Mean Absolute Error (MAE) is useful. It is simple

to understand, but in the case of data with extreme values, it is inefficient. MAPE is also

simple to understand and is used to compare different forecast models or datasets because

it is a percentage value. MAPE has the same problem as MAE in that it is inefficient when

data contains extreme values.

The MAE tells us, on average, how far off the forecast is likely to be. MAE = 0 means that

the predicted values are correct and that the error statistics are in the same units as the

predicted values. The better the model, the lower the MAE value. If the MAE value is

zero, the forecast is correct. In other words, when comparing many models, the one with

82

the lowest MAE is seen as the best. But because MAE doesn't show how big or small the

error is, it can be hard to tell the difference between big and small errors.

● Mean Squared Error (MSE)is beneficial when the spread of prediction values is significant

and larger values must be punished. However, because it is a squared value, this metric is

frequently difficult to comprehend.

Where y' is the value that was predicted and y is the real value. The number n shows how

many values are in the test set as a whole. MSE is almost always good, and values that are

lower are better. Due to the square term, this measure punishes big mistakes or outliers

more than small mistakes. The better MSE is, the closer it is to 0. Even though it solves

MAE and MAPE extreme value and zero problems, it may be bad in some situations. When

there isn't much data, this statistic might overlook problems.

● When the spread is important and bigger values need to be penalized, Root Mean Squared

Error (RMSE) is also useful. When compared to MSE, RMSE is easier to interpret because

the RMSE number is on the same scale as the projected values.

This statistic is always positive as well, with lower numbers showing better performance.

The RMSE number and the projected value have the same unit, which is a benefit of this

method. This makes it easier to understand compared to MSE. The RMSE can also be

compared to the MAE to see if the forecast is off by a lot, but in a way that doesn't happen

very often. The error size is more likely to change if the difference between RMSE and

MAE is large. This statistic can hide problems with small amounts of data.

83

● When dealing with low-volume data, Weighted Mean Absolute Percentage Error

(WMAPE) is also useful. WMAPE uses the weight (priority value) of each observation to

help incorporate the priority.

The current data is shown by A, and the forecast is shown by F. This metric is better than

MAPE because it doesn't have the problem of "infinite error."

The WMAPE number goes down as the model's performance goes up. This metric is useful

for judging forecasting models when the amount of data is low and each observation has a

different priority. Observations that are more important have a higher weight value. As the

error in high-priority forecasts grows, so does the WMAPE number.

84

Appendix G: Python Code used for the current study

-*- coding: utf-8 -*-

"""DBA LSTM Research SOXL.ipynb

"""

!pip install yfinance

Commented out IPython magic to ensure Python compatibility.

#Python Machine Learning Cookbook - Second Edition

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import yfinance as yf

import datetime

from random import seed

seed(0)

Gather data

start = datetime.datetime(2000, 1, 1)

end = datetime.datetime(2019, 12, 31)

85

df = yf.download("SOXX", start, end)

df = df.drop(columns=['Open', 'High', 'Low', 'Close', 'Volume'])

df = df.rename(columns={"Adj Close":'Close'})

#rename dataframe for downward code

Data = df

del df

df = yf.download("SOXX", start, end)

df

Data.shape

Rescale data

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

DataScaled = scaler.fit_transform(Data)

Split training and test data

np.random.seed(7)

86

TrainLen = int(len(DataScaled) * 0.90)

TestLen = len(DataScaled) - TrainLen

TrainData = DataScaled[0:TrainLen,:]

TestData = DataScaled[TrainLen:len(DataScaled),:]

print(len(TrainData), len(TestData))

Construct tested output at timestep t+1

def DatasetCreation(dataset, TimeStep=1):

 DataX, DataY = [], []

 for i in range(len(dataset)-TimeStep-1):

 a = dataset[i:(i+TimeStep), 0]

 DataX.append(a)

 DataY.append(dataset[i+TimeStep, 0])

 return np.array(DataX), np.array(DataY)

Network modeling prep

TimeStep = 1 #Same as MLP if = 1, should be something more far back...errors at different time

steps, need to fix

TrainX, TrainY = DatasetCreation(TrainData, TimeStep)

TestX, TestY = DatasetCreation(TestData, TimeStep)

Transform input into 3D form

87

TrainX = np.reshape(TrainX, (TrainX.shape[0], 1, TrainX.shape[1]))

TestX = np.reshape(TestX, (TestX.shape[0], 1, TestX.shape[1]))

Import packages for model

from keras.models import Sequential

from keras.layers import LSTM, Dense

Create sequential model

model = Sequential()

model.add(LSTM(500, input_shape=(1, TimeStep))) #256 w/ 5eopochs seem fine, worse with

relu. 500 w/20 epocs is good

model.add(Dense(1, activation='sigmoid')) #maybe I can change this to linear later on

model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae']) #metrics orginally

accuracy

model.fit(TrainX, TrainY, epochs=40, batch_size=1, verbose=1)

model.summary()

Evaluate model performance

score = model.evaluate(TrainX, TrainY, verbose=0)

print('Keras Model Loss = ', score[0])

print('Keras Model Accuracy = ', score[1])

88

Make predictions

TrainPred = model.predict(TrainX)

TestPred = model.predict(TestX)

Rescaled predictions to original asset values

TrainPred = scaler.inverse_transform(TrainPred)

TrainY = scaler.inverse_transform([TrainY])

TestPred = scaler.inverse_transform(TestPred)

TestY = scaler.inverse_transform([TestY])

Verify predictions by graphing with proper time series shifting to align everything

TrainPredictPlot = np.empty_like(DataScaled)

TrainPredictPlot[:, :] = np.nan

TrainPredictPlot[1:len(TrainPred)+1, :] = TrainPred

TestPredictPlot = np.empty_like(DataScaled)

TestPredictPlot[:, :] = np.nan

TestPredictPlot[len(TrainPred)+(1*2)+1:len(DataScaled)-1, :] = TestPred

Plot the data and predictions

plt.figure(figsize=(10,5))

plt.plot(scaler.inverse_transform(DataScaled))

89

plt.plot(TrainPredictPlot)

plt.plot(TestPredictPlot)

plt.show()

90

Appendix H: Seed Code

-*- coding: utf-8 -*-

"""DBA LSTM Seed Code / Pilot Test SPY Research.ipynb

"""

!pip install yfinance

Commented out IPython magic to ensure Python compatibility.

#Python Machine Learning Cookbook - Second Edition

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

import yfinance as yf

import datetime

from random import seed

seed(0)

Gather data

start = datetime.datetime(2000, 1, 1)

91

end = datetime.datetime(2019, 12, 31)

df = yf.download("SPY", start, end)

df

df = df.drop(columns=['Open', 'High', 'Low', 'Close', 'Volume'])

df = df.rename(columns={"Adj Close":'Close'})

#rename dataframe for downward code

Data = df

del df

Rescale data

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

DataScaled = scaler.fit_transform(Data)

Split training and test data

np.random.seed(7)

TrainLen = int(len(DataScaled) * 0.90)

TestLen = len(DataScaled) - TrainLen

92

TrainData = DataScaled[0:TrainLen,:]

TestData = DataScaled[TrainLen:len(DataScaled),:]

print(len(TrainData), len(TestData))

Construct tested output at timestep t+1

def DatasetCreation(dataset, TimeStep=1):

 DataX, DataY = [], []

 for i in range(len(dataset)-TimeStep-1):

 a = dataset[i:(i+TimeStep), 0]

 DataX.append(a)

 DataY.append(dataset[i+TimeStep, 0])

 return np.array(DataX), np.array(DataY)

Network modeling prep

TimeStep = 1 #Same as MLP if = 1, should be something more far back...errors at different time

steps, need to fix

TrainX, TrainY = DatasetCreation(TrainData, TimeStep)

TestX, TestY = DatasetCreation(TestData, TimeStep)

Transform input into 3D form

TrainX = np.reshape(TrainX, (TrainX.shape[0], 1, TrainX.shape[1]))

TestX = np.reshape(TestX, (TestX.shape[0], 1, TestX.shape[1]))

93

Import packages for model

from keras.models import Sequential

from keras.layers import LSTM, Dense

from tensorflow.keras.callbacks import EarlyStopping

early_stop = EarlyStopping(monitor='mae',patience=2)

Create sequential model

model = Sequential()

model.add(LSTM(500, input_shape=(1, TimeStep))) #256 w/ 5eopochs seem fine, worse with

relu. 500 w/20 epocs is good

model.add(Dense(1, activation='sigmoid')) #maybe I can change this to linear later on

model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae']) #metrics orginally

accuracy

model.fit(TrainX, TrainY, epochs=40, batch_size=1, verbose=1, callbacks=[early_stop])

model.summary()

Evaluate model performance

score = model.evaluate(TrainX, TrainY, verbose=0)

print('Keras Model Loss = ', score[0])

print('Keras Model Accuracy = ', score[1])

94

Make predictions

TrainPred = model.predict(TrainX)

TestPred = model.predict(TestX)

Rescaled predictions to original asset values

TrainPred = scaler.inverse_transform(TrainPred)

TrainY = scaler.inverse_transform([TrainY])

TestPred = scaler.inverse_transform(TestPred)

TestY = scaler.inverse_transform([TestY])

Verify predictions by graphing with proper time series shifting to align everything

TrainPredictPlot = np.empty_like(DataScaled)

TrainPredictPlot[:, :] = np.nan

TrainPredictPlot[1:len(TrainPred)+1, :] = TrainPred

TestPredictPlot = np.empty_like(DataScaled)

TestPredictPlot[:, :] = np.nan

TestPredictPlot[len(TrainPred)+(1*2)+1:len(DataScaled)-1, :] = TestPred

Plot the data and predictions

plt.figure(figsize=(10,5))

plt.plot(scaler.inverse_transform(DataScaled))

95

plt.plot(TrainPredictPlot)

plt.plot(TestPredictPlot)

plt.show()

plt.plot(TestPredictPlot)

plt.show()

96

Appendix I: LSTM Model

The LSTM (Long Short-Term Memory) network is a type of RNN (Recurrent Neural Network)

that is often used to learn how to predict what will happen next in a sequence of data. Like other

neural networks, LSTM has layers that help it learn and recognize patterns so it can do its job

better. The basic way that LSTM works is to keep the information that is needed and get rid of the

information that is not needed or useful for making predictions. The following are the parts of a

simple LSTM network: forget gate, input gate, and output gate (Venna, et. Al, 2018).

The type of the simple LSTM changes as hidden layers and gates are added. Like in a BI LSTM

network, it can be made up of two LSTM that pass information in either the same or opposite way.

Forget Gate

97

As we've already talked about, one of the main things that the LSTM does is remember and

recognize the information that comes into the network and get rid of the information that the

network doesn't need to learn data and make predictions. This part of the LSTM is made possible

by this gate. It helps decide if information can move through the network's layers. It looks for two

different kinds of information from the network: information from the previous layers and

information from the presentation layer. The picture above shows a Forget gate circuit, where h

and x are pieces of information. This information goes through the sigmoid function, which gets

rid of the information that tends to get closer to zero.

Input Gate

By changing the state of the cell, the input gate helps decide how important the information is.

Where the forget gate helps get rid of information from the network, the importance of the

information is measured by the input gate, which helps the forget function get rid of information

that isn't important and other layers learn the information that is important for making predictions.

The information passes through the sigmoid and tanh functions. The sigmoid function decides how

important each piece of information is, and the tanh function makes the network less biased.

Cell State

The information about weight gained goes through the cell state, and this layer figures out the cell

state. In the cell state, the output of the forget gate is multiplied by the output of the input gate.

The information that could be lost is multiplied by values that are close to zero. Here in the cell

state, the input and output values are added together. This is done to try to keep the cell state up to

date with information that is important to the network.

Output Gate

It is the last gate of the circuit that helps the sigmoid function figure out what the next hidden state

of the network will be. The updated cell from the cell state is sent to the tanh function, and then

the sigmoid function of the output state is used to multiply it. Which helps the information get to

the hidden state. This is the last part of the circuit, and it helps the hidden state decide what

information it should carry.

98

Appendix J: Detailed Testing and Modeling Procedures

The outside data and tools used are from open-sourced and public data. The Python code and

models were from Google’s open-sourced packages. On the other hand, the semiconductor data

was publicly available stock data from Yahoo Finance.

The LSTM model tested in this study was a result of multiple iterations of different combinations

of hyperparameters. In machine learning, a hyperparameter is a setting that the model can use to

affect its performance. Parameters are chosen by the machine learning model itself, while users

of the model can select the hyperparameters. One key hyperparameter chosen was the number of

neurons in the LSTM network. The Google documentation has a default amount of neurons to be

4. Tested were neurons between 4 to 500, which were chosen arbitrarily. It is noteworthy to state

that other studies chosen neurons in the 100s and justified the reason due to their own

hyperparameter tuning. Another insight from hyperparameter turning found that early stopping to

not be needed for improved forecast results.

The best setting was chosen from the out-of-sample forecast closest to the actual historical values.

In machine learning, the portion of the dataset the model trained from does not hold much out of

sample performance, while out of sample performance is the best metric for actual use cases.

Hypothesis Tests

First Hypothesis Test

Hypothesis testing utilizes Python. The following is a brief outline of the accuracy of the

forecasts test:

H01: LSTM model do not produce accurate (<=50%) forecasts.

HA1: LSTM model do produce accurate (>50%) forecasts.

The hypothesis test involves comparing the accuracy of the forecast higher than random

chance, 50%, for an up or down movement. Up or down movement is referencing a prediction

higher or lower than the last historical price point. The 50% level was chosen for practical

purposes. With a model that forecast greater than 50% accuracy, a trader can take financial

derivatives that offer a ratio of 1 to 1 risk-reward set up. Meaning if the trader can have predict

better than 50% accuracy, they can set up a trade that offers at one unit of risk for at least one unit

99

of reward for profit. Effectively, the trader would get odds similar to being the casino in a game

of roulette. A lower than 50% accuracy will determine whether to reject the null hypothesis stating

in LSTM being not an accurate forecasting model for SOXX. Rejecting the null hypothesis

warrants the LSTM model producing accurate forecasts. Forecasting accuracy will be measured

in predicting the same up or down movement. For example, if the predicted forecast was a gain

of 0.37% and the actual result was a gain of 0.24%, then the model would have made an accurate

forecast. While if the predicted forecast was a gain of 0.37% and the actual result was a loss of

0.01%, then the model would have made an inaccurate forecast.

Second Hypothesis Test

Hypothesis testing utilizes Python. The following is a brief outline of the absolute returns

of the forecasting model against a buy and hold strategy:

H02: LSTM model do not generate higher absolute returns in comparison to buy and hold.

HA2: LSTM model do generate higher absolute returns in comparison to buy and hold.

The hypothesis test involves an active performance comparison against a benchmark

strategy, buy and hold. The performance of the LSTM forecasts will determine whether to reject

the null hypothesis stating no superior returns against buy and hold. Rejecting the null hypothesis

warrants the LSTM model holding superior performance against buy and hold. The calculation

for buy and hold returns will be the starting period of the forecast test set and the end of the

forecasting test set. The training period is not counted, since the model has already seen those

prices. The test set represents forecasting to real life conditions. The buy and hold return would

be calculated the asset ending price divided by the asset beginning price minus 1 to get a percentage

return. The forecasting model returns will be calculated as taking the end of day return on an

accurate forecast, while having a loss of the end of day return on an inaccurate forecast. On the

next day, the returns will be compounded until the end of the testing period and compared against

the buy and hold returns.

Third Hypothesis Test

Hypothesis testing utilizes Python. The following is a brief outline of the sample size

affecting the forecasting accuracy:

H03: Sample size does not affect LSTM forecasting accuracy (<= +/-10%).

HA3: Sample size does affect LSTM forecasting accuracy (> +/-10%).

100

The hypothesis test involves various sample sizes against forecasting accuracy. The

accuracy from differing sample sizes will determine whether to reject the null hypothesis stating

no sample size does not affect LSTM forecasting accuracy. Rejecting the null hypothesis warrants

the sample size does affect LSTM forecasting accuracy. The study will use almost 20 years of

pricing SOXX data to start, but will also test for 10 and 5 years of data. On a practical level, if

less data can be used, then model calculations will be faster and save time.

