

IMPROVING SOFTWARE VERIFICATION AND VALIDATION

STATE-OF-PRACTICES: A CASE OF TANZANIA

By

MAGORI ALPHONCE

A DISSERTATION

Presented to the Department of

COMPUTER SCIENCE

Program at Selinus University

In Fulfillment of the Requirements for the Degree of Doctor of Philosophy in

Computer Science

ITALY, 2023

i

TABLE OF CONTENTS

TABLE OF CONTENTS .. i

LIST OF TABLES .. iv

LIST OF FIGURES .. v

BIBLIOGRAPHY .. vii

DECLARATION .. xiv

CERTIFICATE .. xv

ACKNOWLEDGMENT ... xvi

ABSTRACT ... xvii

CHAPTER ONE: INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Background of the Study ... 3

1.2.1 The Evolution of Software Verification and Validation .. 5

1.2 .2 Quality Software .. 6

1.2.3 Software Products Metrics ... 7

1.2.4 Software Process Metrics .. 8

1.2.5 Software Verification & Validation ... 10

1.2.6 Methods of Verification ... 11

1.2.7 Software Process Improvement ... 11

1.2.8 Plan-Do-Check-Act (PDCA) ... 13

1.3 Related Studies .. 14

1.4 Statement of the Problem ... 18

1.5 Significance of the Study ... 19

1.6 Study Objectives .. 19

1.6.1 Main Objective .. 19

1.6.2 Research Questions .. 19

1.7 Scope of the Study ... 20

CHAPTER TWO: LITERATURE REVIEW ... 21

2.1 Definition of Key Terms and Concepts ... 21

ii

2.2 Software Verification and Validation .. 22

2.3 V-Model in Software Development Verification and Validation Activities 22

2.4 Time for Software Development ... 23

2.5 Quality of the Product .. 24

2.6 Empirical Review .. 25

2.6.1 Empirical Studies Conducted in Various Countries and Scales. 25

2.7 Theoretical Framework .. 28

2.8 Conceptual Frame Work .. 28

CHAPTER THREE: METHOD AND MATERIALS ... 29

3.1 Study Area ... 29

3. 2 Research Methodology .. 29

3.3 Methodological Approach ... 29

3.4 Research Design .. 30

3.5 Surveys .. 30

3.6 Literature Survey ... 31

3.7 Data Collection and Analysis .. 31

3.7.1 Questionnaire ... 32

3.7.2 Results Observations: .. 32

3.7.3 Interviews: ... 32

3.7.4 Experiment ... 34

3.8 Sampling Techniques ... 34

3.9 Study Population and Sample Size .. 34

3.10 Data Validity and Reliability Test ... 35

3.11 Research Ethics Considerations ... 35

CHAPTER FOUR: RESULTS AND ANALYSIS .. 36

4.1 Introduction .. 36

4.2 Findings and Results for the Surveyed Organizations ... 37

4.2 Experiments Results .. 53

4.2.1 In defect analysis, how do review and inspections compare to testing?.................. 53

iii

4.2.2 Comparison Between The Software Design Review and Software Code Review

Techniques ... 54

4.2.3 Comparison Between Software Code Review, Software Design Review, and

Software Testing Techniques .. 54

4.2.4 Comparison between Software Inspection and Software Testing Techniques 55

4.2.5 Summary of Experiment Results ... 56

4.3 Findings of the Literature Review ... 57

4.4 Threats to Validity ... 58

CHAPTER FIVE: DISCUSSION ... 60

5.1 Discussion of Findings .. 60

CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS 63

6.1 Conclusions .. 63

6.2 Study Recommendations ... 64

6.2.1 Future Work ... 65

APPENDEX .. 66

iv

LIST OF TABLES
Table 1.1: Methods of Validation .. 10

Table 1. 2: Methods 0f Verification ... 11

Table 4.1: Company improve the competency level of your software verification
and validation ... 37

Table 4. 2: Personnel in charge of software verification and validation activities in
software development .. 38

Table 4. 3: Verification and Validation methods and activities used to find defects
before test executions .. 39

Table 4. 4: Types of testing used in Tanzanian software development organizations
are listed here. .. 40

Table 4. 5: Details of verification and validation topics used and implemented in
software development organizations ... 41

Table 4. 6: Details of Software development lifecycle (SDLC) models analysis 42

Table 4.7: Verification and validation activities performed in organization 43

Table 4.8: Provide details of the main areas of improvement for verification and
validation activities. ... 44

Table 4. 9: Tools do you use it in your organization during verification and
validation activities .. 45

Table 4.10: Budgeted Test Levels in the Software Development Organization 46

Table 4.11: Software verification and validation challenges .. 49

Table 4.12: Verification and validation challenges in agile projects 50

Table 4.13: Details of verification and validation skills .. 51

Table 4.14: Details of Non-software verification and validation skills are most
expected from an agile tester ... 52

Table 4.15: Verification and validation techniques are used verification and
validation team ... 53

v

LIST OF FIGURES

Figure 1.1: Usages Process Related Quality Attribute .. 9

Figure 1.2: Usages Product Related Quality Attribute .. 10

Figure 1.3: The Cycle of Plan-Do-Check-Act... 13

Figure 2.1: Describes the activities and procedures for software verification and

validation, as well as how testing can be integrated into each phase of

the software development process. .. 23

Figure 2.2: Conceptual Framework ... 28

Figure 4.1: Company improve the competency level of your software verification

and validation .. 37

Figure 4.2: Summarize Personnel in charge of software verification and

validation activities in software development organizations in

Tanzania .. 38

Figure 4.3: Analysis Verification and validation methods and activities used to

find defects before test executions .. 39

Figure 4.4: In the software development organizations, identify the most

important type of testing. .. 41

Figure 4.5: Analysis verification and validation topics used and implemented in

software development organizations ... 42

Figure 4.6: Software Development Lifecycle (SDLC) Models Analysis 43

Figure 4.7: Analyzing objectives of verification and validation activities of

surveyed organization ... 44

Figure 4.8: Indicates areas for improvement in software verification and

validation activities for surveyed software development

organizations. .. 45

Figure 4.9: Analyze tools organizations use during verification and validation

activities .. 46

Figure 4.10: Analyze Software Test Level Budget .. 47

Figure 4.11: Showcase Technology for Software Development Companies 48

Figure 4.12: shows what will be the most trending topic for the software

verification and validation profession in the near future. 49

vi

Figure 4.13: Verification and validation challenges in agile projects 50

Figure 4.14: Analyze Details of verification and validation skills 51

Figure 4.15: Non-software verification and validation skills are most expected

from an agile tester .. 52

Figure 4.16: verification and validation techniques are used by verification and

validation team .. 53

Figure 4.17: Software defects analysis .. 56

Figure 4.18: Experiment results show that more software defects were introduced

during coding than design defects. .. 56

Figure 4.19: The experiment's findings revealed that many defects were removed

during testing, compilation, and code review, but few defects were

removed during design review. ... 57

vii

BIBLIOGRAPHY

REFERENCES

Abbas, N. (2018). Designing Self-Adaptive Software Systems with Reuse (Issue 318).

Abdullah, A., Khan, M. H., & Srivastava, R. (2015). Flexibility: A Key Factor to Testability.

International Journal of Software Engineering & Applications, 6(1), 89–99.

https://doi.org/10.5121/ijsea.2015.6108

Anand, A., & Uddin, A. (2019). Importance of Software Testing in the Process of Software

Development. IJSRD-International Journal for Scientific Research & Development|,

6(February), 2321–0613. www.ijsrd.com

Andersson, C., & Runeson, P. (2014). Verification and validation in industry — A qualitative

survey on the state of practice Verification and Validation in Industry - A Qualitative

Survey on the State of Practice. February 2002.

https://doi.org/10.1109/ISESE.2002.1166923

Anwar, N., & Kar, S. (2019). Review Paper on Various Software Testing Techniques &

Strategies. Global Journal of Computer Science and Technology, 19(2), 43–49.

https://doi.org/10.34257/gjcstcvol19is2pg43

Babbar, H. (2017). Software Testing : Techniques and Test Cases. International Journal of

Research in Computer Applications and Robotics, 5(3), 44–53.

Bäckström, K. (2022). Industrial Surveys on Software Testing Practices : A Literature

Review.

Beyer, D. (2022a). Advances in Automatic Software Testing: Test-Comp 2022. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics): Vol. 13241 LNCS. Springer

International Publishing. https://doi.org/10.1007/978-3-030-99429-7_18

Beyer, D. (2022b). Progress on Software Verification: SV-COMP 2022. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 13244 LNCS, 375–402.

https://doi.org/10.1007/978-3-030-99527-0_20

Bjarnason, E., Runeson, P., Borg, M., Unterkalmsteiner, M., Engström, E., Regnell, B.,

Sabaliauskaite, G., Loconsole, A., Gorschek, T., & Feldt, R. (2014). Challenges and

practices in aligning requirements with verification and validation: a case study of

six companies. Empirical Software Engineering, 19(6), 1809–1855.

viii

https://doi.org/10.1007/s10664-013-9263-y

Bondarev, S. E., Chudinov, M. A., & Prokhorov, A. S. (2019). The analysis of existing

methods of software verification. Proceedings of the 2019 IEEE Conference of

Russian Young Researchers in Electrical and Electronic Engineering, ElConRus

2019, 1, 191–193. https://doi.org/10.1109/EIConRus.2019.8657169

Bryant, M. (2006). Conducting observational research. Research Methods in Health

Promotion, 107–128.

Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., Bywaters, D., &

Walker, K. (2020). Purposive sampling: complex or simple? Research case

examples. Journal of Research in Nursing, 25(8), 652–661.

https://doi.org/10.1177/1744987120927206

Carlos, T. M., & Ibrahim, M. N. (2021). Practices in software testing in Cameroon challenges

and perspectives. November 2020, 1–17. https://doi.org/10.1002/isd2.12165

Centers for Disease Control and Prevention. (2018). Data Collection Methods for Program

Evaluation: Observation. Centers for Disease Control and Prevention, 16, 2.

https://www.cdc.gov/healthyyouth/evaluation/pdf/brief16.pdf

Ciesielska, M., & Jemielniak, D. (2017). Qualitative methodologies in organization studies.

Qualitative Methodologies in Organization Studies, 2(December), 1–264.

https://doi.org/10.1007/978-3-319-65442-3

Dawadi, S., & Giri, R. A. (2021). Mixed-Methods Research : A Discussion on its Types ,

Challenges , and Criticisms. 25–36.

Dias-Neto, A. C., Matalonga, S., Solari, M., Robiolo, G., & Travassos, G. H. (2017). Toward

the characterization of software testing practices in South America: looking at Brazil

and Uruguay. Software Quality Journal, 25(4), 1145–1183.

https://doi.org/10.1007/s11219-016-9329-3

Edvardsson, J. (2006). Techniques for Automatic Generation of Tests from Programs and

Specifications. 1034.

Feldt, R., Marculescu, B., Schulte, J., Torkar, R., Preissing, P., & Hult, E. (n.d.). Published

with permission from: Optimizing Verification and Validation Activities for Software

in the Space Industry Optimizing Verification and Validation Activities for Software

in the Space Industry. http://www.bth.se/fou/

ix

Fiechter, A. (2020). Assessing the Impact of Readability in Software Engineering. June.

https://www.inf.usi.ch/lanza/Downloads/MSc/Fiec2020a.pdf

Garousi, V., Felderer, M., & Kuhrmann, M. (2020). Exploring the industry ’ s challenges in

software testing : An empirical study. February. https://doi.org/10.1002/smr.2251

Garousi, V., & Varma, T. (2010). A replicated survey of software testing practices in the

Canadian province of Alberta: What has changed from 2004 to 2009? Journal of

Systems and Software, 83(11), 2251–2262. https://doi.org/10.1016/j.jss.2010.07.012

Gren, L., & Antinyan, V. (2017). On the relation between unit testing and code quality.

Proceedings - 43rd Euromicro Conference on Software Engineering and Advanced

Applications, SEAA 2017, 52–56. https://doi.org/10.1109/SEAA.2017.36

Gupta, N. K. (2020). Researching and Writing the Dissertation. In Prepare, Succeed,

Advance. https://doi.org/10.2307/j.ctv1131gjp.9

Gupta, Y. (1989). Software Quality Assurance. International Journal of Quality & Reliability

Management, 6(4), 56–67. https://doi.org/10.1108/02656718910134412

Hunter, R. B., Thayer, R. H., & Paulk, M. C. (2011). Software process improvement.

Software Process Improvement, October, 1–611.

https://doi.org/10.1109/9781118156667

Hynninen, T., Kasurinen, J., Knutas, A., & Taipale, O. (2018). Software testing: Survey of the

industry practices. 2018 41st International Convention on Information and

Communication Technology, Electronics and Microelectronics, MIPRO 2018 -

Proceedings, 1449–1454. https://doi.org/10.23919/MIPRO.2018.8400261

Islamia, J. M. (2017). Research design Research design. Research in Social Science:

Interdisciplinary Perspectives, September, 68–84. file:///E:/Documents/dosen/buku

Metodologi/[John_W._Creswell]_Research_Design_Qualitative,_Q(Bookos.org).pdf

Isong, B., & Ekabua, O. (2015). S TATE - OF - THE -A RT IN E MPIRICAL V ALIDATION

OF S OFTWARE M ETRICS FOR F AULT P RONENESS P REDICTION :

SYSTEMATIC REVIEW. 6(6), 1–18. https://doi.org/10.5121/ijcses.2015.6601

Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A. (2017). Software testing techniques:

A literature review. Proceedings - 6th International Conference on Information and

Communication Technology for the Muslim World, ICT4M 2016, November, 177–

182. https://doi.org/10.1109/ICT4M.2016.40

x

Kassab, M., Defranco, J. F., & Laplante, P. A. (2017). Software Testing The State of the

Practice. August 2019. https://doi.org/10.1109/MS.2017.3571582

Kassab, M., DeFranco, J., & Laplante, P. (2016). Software Testing Practices in Industry: The

State of the Practice. IEEE Software, March 2019, 1–1.

https://doi.org/10.1109/ms.2016.87

Kawulich, B. B. (2005). Participant observation as a data collection method. Forum

Qualitative Sozialforschung, 6(2).

Kiger, M. E., & Varpio, L. (2020). Thematic analysis of qualitative data : AMEE Guide.

Medical Teacher, 0(0), 1–9. https://doi.org/10.1080/0142159X.2020.1755030

Koshti, S. D. (2013). Research methodology.

Latif, B., & Rana, T. (2020). A preliminary survey on software testing practices in Khyber

PakhtunKhwa region of Pakistan. Turkish Journal of Electrical Engineering and

Computer Sciences, 28(1), 575–589. https://doi.org/10.3906/elk-1903-6

Lee, J., Kang, S., & Lee, D. (2012). Survey on software testing practices. IET Software, 6(3),

275–282. https://doi.org/10.1049/iet-sen.2011.0066

Lu, Y., & Abeysekera, I. (2020). Research methodology and methods. Social and

Environmental Disclosure by Chinese Firms, May, 86–117.

https://doi.org/10.4324/9781315797434-11

M. Altaie, A., Gh. Alsarraj, R., & H. Al-Bayati, A. (2020). Verification and Validation of a

Software: a Review of the Literature. Iraqi Journal for Computers and Informatics,

46(1), 40–47. https://doi.org/10.25195/ijci.v46i1.249

M., S., Shamsur, M., Z., A., & Hasibul, M. (2018). A Survey of Software Quality Assurance

and Testing Practices and Challenges in Bangladesh. International Journal of

Computer Applications, 180(39), 1–8. https://doi.org/10.5120/ijca2018917063

Malviya, A. (2019). Software Testing: Concepts and Issues. SSRN Electronic Journal, June.

https://doi.org/10.2139/ssrn.3351067

Mendoza, I., Kalinowski, M., Souza, U., & Felderer, M. (2019). Relating Verification and

Validation Methods to Software Product Quality Characteristics: Results of an

Expert Survey. Lecture Notes in Business Information Processing, 338(January),

33–44. https://doi.org/10.1007/978-3-030-05767-1_3

MOHAJAN, H. K. (2018). Qualitative Research Methodology in Social Sciences and Related

Subjects. Journal of Economic Development, Environment and People, 7(1), 23.

xi

https://doi.org/10.26458/jedep.v7i1.571

Mousaei, M. (2020). Review on Role of Quality Assurance in Waterfall and Agile Software

Development. 5(2), 90–97.

Neri de Souza, F., Neri, D. C. D. de S. B., & Costa, A. P. (2016). Asking questions in the

qualitative research context. Qualitative Report, 21(13), 6–18.

https://doi.org/10.46743/2160-3715/2016.2607

Patel, M., & Patel, N. (2019). Exploring Research Methodology: Review Article.

International Journal of Research and Review Keywords: Research, Methodology,

Research Methodology, 6(March), 48–55. www.ijrrjournal.com

Peddireddy, S. K. R., & Nidamanuri, S. R. (2021). Requirements Validation Techniques and

Factors Influencing them. Master of Science in Software Engineering, February.

www.bth.se

Persson, A. G. M. (2019). Research methodology. In Foreign Direct Investment in Large-

Scale Agriculture in Africa. https://doi.org/10.4324/9780429020018-4

Polamreddy, R. R., & Irtaza, S. A. (2012). Software Testing : A Comparative Study Model

Based Testing VS Test Case Based Testing. March.

Poudel, I. D. (2018). Aligning Requirements with Verification & Validation for Software

Engineering Process Improvement.

Quantitative Research Methods. (n.d.).

Quesada-López, C., Hernandez-Agüero, E., & Jenkins, M. (2019). Characterization of

software testing practices: A replicated survey in Costa Rica. Journal of Software

Engineering Research and Development, 7, 6. https://doi.org/10.5753/jserd.2019.472

Rahim, M. S., Hasan, M. H., Chowdhury, A. E., & Das, S. (2017). Software engineering

practices and challenges in Bangladesh: A preliminary survey. Journal of

Telecommunication, Electronic and Computer Engineering, 9(3-3 Special Issue),

163–169.

Rajabli, N., Flammini, F., & Member, S. (2021). Software Verification and Validation of Safe

Autonomous Cars : A Systematic Literature Review. 4797–4819.

Raulamo-Jurvanen, P. (2020). Evaluating and selecting software test automation tools :

synthesizing empirical evidence from practitioners.

xii

Raulamo-Jurvanen, P., Hosio, S., & Mäntylä, M. V. (2019). Practitioner evaluations on

software testing tools. ACM International Conference Proceeding Series, 57–66.

https://doi.org/10.1145/3319008.3319018

Regulwar, G. B., & Gulhane, V. S. (2010). Software Testing Practices. International Journal

of Computer Applications, 1(2), 1–7. https://doi.org/10.5120/68-165

Ridder, H. G. (2017). The theory contribution of case study research designs. Business

Research, 10(2), 281–305. https://doi.org/10.1007/s40685-017-0045-z

Rodriguez, M., Piattini, M., & Ebert, C. (2019). Software Verification and Validation

Technologies and Tools. IEEE Software, 36(2), 13–24.

https://doi.org/10.1109/MS.2018.2883354

Seth, F. P., Taipale, O., & Smolander, K. (2014). Organizational and Customer related

Challenges of Software Testing : An Empirical Study in 11 Software Companies.

May. https://doi.org/10.1109/RCIS.2014.6861031

Seuring, S., Yawar, S. A., Land, A., Khalid, R. U., & Sauer, P. C. (2021). The application of

theory in literature reviews – illustrated with examples from supply chain

management. International Journal of Operations and Production Management,

41(1), 1–20. https://doi.org/10.1108/IJOPM-04-2020-0247

Sp, L. S., & Sp, J. N. (2007). Model Driven Software Verification and Validation Model

Driven Software Verification and Validation.

Strazdi, L., & Arnicane, V. (2018). What Software Test Approaches , Methods , and

Techniques are Actually Used in Software Industry ?

Tao, C., Gao, J., & Wang, T. (2019). Testing and Quality Validation for AI Software-

Perspectives, Issues, and Practices. IEEE Access, 7, 120164–120175.

https://doi.org/10.1109/ACCESS.2019.2937107

Unterkalmsteiner, M. (2015). Coordinating Requirements Engineering and Software Testing.

In 2015:08.

Upadhyay, P. (2012). The Role of Verification and Validation in System Development Life

Cycle. IOSR Journal of Computer Engineering, 5(1), 17–20.

https://doi.org/10.9790/0661-0511720

xiii

Vasanthapriyan, S. (2018). A study of software testing practices in Sri Lankan Software

Companies. 2018 IEEE International Conference on Software Quality, Reliability

and Security Companion (QRS-C), 339–344. https://doi.org/10.1109/QRS-

C.2018.00066

Vukovic, V., Djurkovic, J., Sakal, M., & Rakovic, L. (2020). An empirical investigation of

software testing methods and techniques in the province of Vojvodina. Tehnicki

Vjesnik, 27(3), 687–696. https://doi.org/10.17559/TV-20180713101347

Weber, C. V., Curtis, B., & Chrissis, M. B. (1993). Capability Maturity Model, Version 1.1.

IEEE Software, 10(4), 18–27. https://doi.org/10.1109/52.219617

Yadav, B., & Sharma, A. (2017). Gender roles analysis of ornamental enterprises in

Maharashtra State, India. Asian Fisheries Science, 30(Special Issue), 333–342.

https://doi.org/10.33997/j.afs.2017.30.S1.020

Yadav, P., & Kumari, P. (2015). Review paper on software testing. International Journal of

Engineering Research & Technology (IJERT), 1(12), 588–592.

Yang, H. S., Zheng, L., & Huang, Y. (2012). Critical success factors for MES implementation

in China. IEEE International Conference on Industrial Engineering and Engineering

Management, 9, 558–562. https://doi.org/10.1109/IEEM.2012.6837801

Zevalkink, J. (2021). Observation method. Mentalizing in Child Therapy, May, 100–113.

https://doi.org/10.4324/9781003167242-6

xiv

DECLARATION

I hereby declare that the research work titled "Improving Software Verification and

Validation State-of-Practices -case of Tanzania," submitted in fulfillment of the requirements

for the award of a Doctor of Philosophy (Ph.D.), is my own work, except where indicated by

referencing, and that the work presented in it has not been submitted in support of another

degree.

I declare that this research is an original report of my research, has been written by me, and

has not been submitted for any previous degree. The experimental and survey work is my own

work; the collaborative contributions have been indicated clearly and acknowledged. All

supporting literature and resources have been adequately referenced. I declare that this thesis

was composed by myself, that the work contained herein is my own except where explicitly

stated otherwise in the text, and that this work has not been submitted for any other degree or

professional qualification.

Magori Alphonce

 Signature

JANUARY, 2023

xv

CERTIFICATE

This is to certify that the work contained in the thesis entitled "Improving Software

Verification and Validation State-of-Practices: A Case of Tanzania," submitted by Magori

Alphonce, is for the award of the degree of Doctor of Philosophy (Ph.D.) to the Selinus

University of Science and Literature. The research work was carried out by him under my

direct supervision and guidance. I considered that the thesis has reached the standards and is

fulfilling the requirements of the rules and regulations relating to the nature of the degree. The

thesis content has not been submitted for the award of any other degree at this or any other

university.

Main Advisor ’s Name Date Signature

Supervisor

xvi

ACKNOWLEDGMENT

This research is the result of my effort to improve the software verification and validation

practices in Tanzanian software development organizations. I've learned a lot about the

differences between academic and industrial software verification and validation practices.

The more I learn about the industrial and academic focuses, the more I am aware that most

software engineers are focusing on developing software with high quality within a deadline

and budget, while academic research focuses on theoretical knowledge.

I am truly thankful to the Tanzanian development organizations for supporting me during data

collection and giving me the opportunity to do a PhD in Tanzania. I am thankful to all the

participants in this research: the managers, software testing experts, developers, and quality

assurance team; without them, this thesis could not be completed. I would like to express my

deepest gratitude and appreciation to my supervisor.

For his patience, support, and excellent guidance throughout my PhD studies. I cannot express

in words how much you have contributed to this study by kindly sharing your knowledge and

experience with me. Thank you for everything you have done for me. In addition to this, my

heartfelt thanks go to the whole family of Selinus University for allowing me to pursue my

study on "Improving Software Verification and Validation State-of-Practice—A Case of

Tanzania."

I am grateful to my advisor for his assistance throughout this research. My profound thanks go

to my mother, who motivated, encouraged, gave advice, and followed me. My sincere

appreciation and thanks go to my father, Alphonce Magori, and all my family members for

their patience and sharing of love, care, and financial assistance during my research.

xvii

ABSTRACT

In the software industry, quality is an important aspect that every developer should consider.

Software development firms are evaluated based on the effectiveness of their verification and

validation processes as one of the controls for delivering higher-quality, cost-effective, and

timely software to end users.

Software verification and validation activities are applied to all phases of software processes.

The aim is to improve the software processes and have higher-quality, cheaper software

delivered faster to end users.

This research aims to improve software verification and validation state of practices in the

software development process as well as to propose solutions to verification and validation

challenges.

The study was conducted at eight software development organizations in Tanzania. comparing

existing verification and validation activities in software development organizations,

identifying emerging issues with verification and validation processes in software

development processes, analyzing the quality controls required for verification and validation

in software development processes, and recommending the best solutions and upgraded means

of enhancing quality, reducing cost, and saving time for software development phases

The study employed a comparison method for the verification and validation processes in the

software development industry. The desk work for the literature review, survey, and

experiment used to gather data

The major finding of this study is that verification and validation techniques help provide

higher-quality software that is deliverable in the required time period to the customer or end-

user.

1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

Before delivering the final products to end users, software products must be verified and

validated. Doing software verification and validation helps determine if software programs

meet the client’s needs (Mendoza, Souza, et al., 2019). Many software organizations today are

focusing on delivering higher-quality software products to users in a timely manner based on

market demand (Raulamo-Jurvanen, 2020). Improving the software verification and

validation with the aim of increasing the software quality Software process improvement is

the key to understanding the software processes used at the moment and changing them with

the aim of improving the quality of the software products (Bjarnason et al., 2014).

In this study, the focus is on improving the existing software verification and validation

practices.

The study identified existing software verification and validation challenges and proposed a

solution to those verification and validation challenges. There are many traditional

verification and validation techniques that exist, and many organizations and individuals have

applied them today (Vukovic et al., 2020). But some have difficulties helping them improve

the quality of the software products and deliver the software within a short timeframe (Torres-

Carrion et al., 2018). This study emphasized the importance of improving verification and

practice in order to detect software product defects during the stages of software development

as a result of a software project failure (Lee et al., 2012; Upadhyay, 2012). The research

presented in this thesis focuses on verification and validation techniques that are able to

remove a number of bugs or defects and lead to higher-quality software products in a short

time. Many countries use software through different applications; in order to make sure that

the overall system is working as required (Chandrasekar et al., 2014), it is important to

improve the use of verification and validation techniques. The most important factor to

consider is how we can bridge the gap between industry research and industry practices for

verification and validation, which exist and are used by many organizations and individuals

today (Gren & Antinyan, 2017) (Scatalon et al., 2019). Improving the existing verification

and validation tools and methods can help software development organizations improve the

quality of their software products and deliver them within a short timeframe (Anand & Uddin,

2

2019). This thesis is based on the field of computer science and highlights verification and

validation techniques that already exist and have been discussed in the various literatures that

help to improve software processes and software products. There are many traditional

verification and validation techniques that are already existing, like software reviews,

software inspections, formal methods, and software, but some have some strengths and some

have weaknesses once used or applied, like taking a lot of time for discovering bugs or

removing This thesis proposes to use verification and validation techniques to improve

software processes and deliver higher software quality to the end user in a short period of

time. Here we are following the software process improvement, verification, and validation

techniques, as well as the software qualities with their characteristics in the background

section. Our research methodology employed the survey method, an experiment case study,

and a literature survey. The results of this whole work are based on a survey, an experiment

case study, and a literature survey. The results and findings derived from the research

objectives and research questions of the study

According to several studies on software verification and validation methods, the status and

problems of software verification and validation research, and reviews on verification and

validation methodology and techniques, as well as testing tools, current software verification

and validation processes are far from adequate (Gren & Antinyan, 2017) (Bäckström, 2022).

They argue that advanced tools and seamless integration between development and

verification and validation are still needed and that there are still gaps between verification

and validation research and industry practices (Mohammadi et al., 2013; Quesada-López et

al., 2019; Lee et al., 2012).

 Empirical studies have shown that in many software development organizations, most of their

project time is spent on verification and validation activities (Upadhyay, 2012; Carlos &

Ibrahim, 2021; Poudel, 2018; Belay, 2020). Software development organizations in their

software development projects spend as much as half of the projected schedule on verification

and validation activities (Mendoza et al., 2019) (Nadu & Nadu, 2019). Past studies have

shown that different phases of software development have their own verification and

validation processes (Naqvi et al., 2020), so if you combine all phases from the designing

stage until the product is in the market, nearly half of the time used in the development of the

product is used for verification and validation activities (Anwar & Kar, 2019). (Henningsson,

3

2005; Anasuodei et al., 2021; M. Al Atitaie et al., 2020). Various software teams utilize a

wide range of verification and validation procedures, and there is no evidence in the literature

about the use and importance of such practices in various industries (Quesada-López et al.,

2019). (Dias-Neto et al., 2017; Naqvi et al., 2020). Therefore, there is a gap between academic

knowledge and the software verification and validation practices used in software

development organizations (Garousi, Felderer, & Kuhrmann, 2020; Quesada-López et al.,

2019; Garousi & Zhi, 2013).

1.2 Background of the Study

Software is developed to solve users' needs. In today’s competitive world of changing science

and technology, software developers and engineers need to deliver quality software

consistently and more quickly (Latif & Rana, 2020) (Vukovic et al., 2020). They also need to

adhere to the quality and standards required, and that can be achieved through the application

of development techniques and tools and the use of verification and validation procedures

throughout the development process (Anand & Uddin, 2019). The main objectives of

verification and validation in software development are to check if the developed software

meets the business needs and specifications (Bondarev et al., 2019) (Latif & Rana, 2020)

(Raulamo-Jurvanen et al., 2019). Verification and validation is the combination of analysis

and testing activities across the full life cycle and complements the efforts of other quality

assurance and control-engineering functions (Fernández-Sanz et al., 2009; Kassab et al.,

2016).

Software verification and validation is an important phase of software engineering to ensure

the development of high-quality software (Upadhyay, 2012) (Belay, 2020) (Fiechter, 2020).

Even if the body of knowledge and the research literature in software verification and

validation are vast, there is still a high industry need for more improvements in the

effectiveness and efficiency of software verification and validation activities (Al Neaimi,

2012) (Poudel, 2018). While industry and academia are working on their verification and

validation activities in a mostly disjoint manner (Quesada-López et al., 2019) (Anand &

Uddin, 2019) (Garousi, Felderer, & Kuhrmann, 2020) , it is often not clear what major

challenges the industry is experiencing that need more research effort from the academic

community (Garousi, Felderer, Kuhrmann, et al., 2020). Furthermore, understanding the

specific challenges of the industry in software verification is an important issue in expanding

4

the contributions and impact of verification and validation research in general (Feldt et al.,

2010) (Marttinen et al., 2020) Anwar and Kar (2019)

Software development organizations use a number of software verification and validation

methodologies and tools to improve the quality of their products (Latif & Rana, 2020)(Gren &

Antinyan, 2017) (ISTQB, 2018) (Henningsson, 2005) (Strazdi & Arnicane, 2018).

To ensure effective software verification and validation in the software development process,

many software verification and validation approaches, techniques, and processes are utilized,

supported by automated software tools (Beyer, 2022a) (Belay, 2020) (Latif & Rana, 2020)

(Garousi, Felderer, Kuhrmann, et al., 2020). Many software verification and validation

methods should be designed to be applicable at various levels of system testing, utilizing

multiple methodologies and processes for improved software testing (Beyer, 2022a) (Garousi

et al., 2020) (Quesada-López et al., 2019). Software verification and validation is a required

process for software development organizations veriffy and validate the system under d and

afterevelopment (Rahim et al., 2017) (Ullah Khan et al., 2015) (Vukovic et al., 2020). Many

leading software development organizations are faced with several complex difficulties

relating to technical advances, which include technologies developed by them for the

development of developed systems (Latif & Rana, 2020) (Anasuodei et al., 2021) (Garousi et

al., 2020) (Kassab et al., 2017). Despite being defined in many different and imprecise ways,

quality is without a doubt the most desired component of any software by its stakeholders

(Beyer, 2022a) (Upadhyay, 2012) (Chandrasekar et al., 2014) (Mendoza, Souza, et al., 2019)

(Fiechter, 2020).

Knowledge of software verification and validation can be applied to various testing activities

and purposes (Dias-Neto et al., 2017; Hynninen et al., 2018). Software testing should be

conducted throughout the development process because software development is an error-

prone task (Strazdi & Arnicane, 2018) (Mousaei, 2020) (M. Altaie et al., 2020) (Mendoza et

al., 2019). This ensures that quality software products are produced (Tao et al., 2019). As a

result, software testers must collaborate with all other software experts involved in the

development process (Fiechter, 2020) (Kassab et al., 2016) (Garousi & Varma, 2010).

Importantly, software testers should not only be familiar with a wide range of software testing

procedures, but they should also be aware of software development methodologies (Beyer,

2022a) (Seth et al., 2014) (Regulwar & Gulhane, 2010) (Feldt et al., n.d.).

5

1.2.1 The Evolution of Software Verification and Validation

The evolution of software verification and validation dates back to the 1950s, when it was

known as "software testing" or testing in general. Software developers of that time recognized

that software testing during software development was an essential and necessary part of the

software development process (Ullah, 2019). For example, incomplete or missed software

testing has led to disasters such as the crash of an Airbus A400M in 2015 and NASA's Mars

Climate Orbiter loss in 1999 (which caused damage of $125 million). Through its evolution,

the software industry has understood the need for more process-oriented testing in a phased

manner (Ullah, 2019) (Fries, 2012).

So, the software verification and validation we have today didn’t evolve in a single day; it

took time and sweat to get it where it is today. Testing gurus like Hetzel and Dave Gelprin

divide testing into five significant eras:

Debugging-oriented era: This phase was during the early 1950s, when there was no distinction

between testing and debugging. The focus was on fixing bugs.

Developers used to write code and, when faced with an error, would analyze and debug the

issues. There was no concept of testing or testers.

Demonstration-oriented era: From 1957 to 1978, the distinction between debugging and

testing was made, and testing was carried out as a separate activity. During this era, the major

goal of software testing was to make sure that software requirements were satisfied.

Destruction-oriented era: From 1979 to 1982, the focus was on breaking the code and finding

the errors in it. It was Glenford J. Myers who initially introduced the separation of debugging

from testing in 1979, although his attention was on breakage testing. It illustrated the software

engineering community’s desire to separate fundamental development activities, such as

debugging, from verification (Ullah, 2019).

Evaluation-oriented era: From 1983 to 1987, the focus was on evaluating and measuring the

quality of software. Testing increased the confidence index in how well the software worked.

Testers tested until they reached an acceptable point where the number of bugs detected was

reduced. This was mainly applicable to large software (Ullah, 2019; M. Altaie et al., 2020).

6

Prevention-oriented era: 1988–2000 saw a new approach, with tests focusing on

demonstrating that software met its specifications, detecting faults, and preventing defects.

The code was divided into testable and non-testable sections. Testable code had fewer bugs

than code that was hard to test. Identifying testing techniques was critical in this era. The last

decade of the 20th century also saw exploratory testing, where a tester explored and deeply

understood the software in an attempt to find more bugs. (Latif & Rana, 2020)

The early 2000s saw the rise of new concepts of testing like test-driven development (TDD)

and behavioral-driven development (BDD). And in 2004, we witnessed a major revolution in

testing with the advent of automation testing tools like Selenium. Likewise, API testing using

tools like SOAP UI marked another turning point in the history of testing. Finally, the current

era is moving towards testing using artificial intelligence (AI) tools and cross-browser testing

using tools like SauceLabs, Browserstack, etc. (Ullah, 2019).

So, many software verification and validation processes happen today because of testing.

Online shops deploy millions of lines of code because of the testing in place. Facebook and

Instagram developers push code to the live site without any downtime because of the testing

mechanism they’ve set up to ensure zero failures.

In general, the objectives of verification and validation in software development are to ensure

that the product satisfies the users' needs. Thus, every aspect of the product’s requirements

and specifications must be the target of some software verification and validation activity

(Anwar & Kar, 2019; Vukovic et al., 2020).

 1.2 .2 Quality Software

The quality of software is very important for the industry these days. By "software quality,"

we mean that the "specified software products or systems" meet the specifications (Mousaei,

2020). The time that software started to be developed, the finishing time, the project lead

time, and the timelines of the software project identified a number of attributes to consider

when it comes to product-related quality (Gren & Antinyan, 2017). These include efficiency,

reliability, usability, and maintainability of the software products. Therefore, the two

attributes should be balanced (Mousaei, 2020). These include efficiency, reliability, usability,

and maintainability of the software products. Therefore, the two attributes should be balanced.

By doing so, higher-quality software can be obtained. It is true that for many software

7

companies or industries developing software systems, the focus is on delivering higher-quality

software to the end user or customer within a short time (Beyer, 2022b). It is not

recommended to wait to deliver the software products to the end-user customers until the

demands of that software product are met or the demand for that software product is out of the

market's range. The cost and timeliness of software projects are major factors in the success of

quality software products (Rodriguez et al., 2019). Requirements or specifications. This

avoids the consequences or problems of a system failure, such as in socio-technical systems

and safety-critical systems (Beyer, 2022).

1.2.3 Software Products Metrics

Software development companies and software developers need to estimate the size, time,

cost, and standardization of the software products that they need to develop (Mendoza, Souza,

et al., 2019). And follow them in order to make it easy for them to get a clear picture of what

products are going to be developed for the specific software projects they need to develop.

And follow them in order to make it easy for them to get a clear picture of what products are

going to be developed at the specific software project (Bondarev et al., 2019). Based on the

software product metrics, it is easy to estimate the size of the software project that needed to

be developed. Here, software developers can know how many lines of code are needed during

the software coding process, and it is easy to estimate and follow. What is the number of

documents that we need to use in the specific software project? Not only that, but by using

and following the software product metrics, we can get a number of advantages for software

process improvement (Sp & Sp, 2007). For example, we can be able to understand what and

how many components are needed for developing the software program or system because

there is the possibility of using different components from different vendors if the product

metrics are well taken and followed during the software process improvement. (Abdullah et

al., 2015)

Therefore, following these metrics also provides for the standardization of the components

involved in developing the software system as specified in the original software projects.

Also, using the software product metrics helps the software development company or

organization estimate the size of software products, which include lines of code (Anasuodei et

al., 2021). Also, it is very easy to understand how many test cases will be derived from a

specific program. Knowing all the derived test cases that are involved in the software

8

program, it is easy to test and know how many test cases passed successfully and how many

test cases failed. This metric, when applied during software development, makes it easy to

establish confidence in the system (Hynninen et al., 2018). Because it is easy to understand

what products are used, these also help a lot for the software process improvement because

the software developer can be able to understand how many lines of code are involved in the

specific program and reuse some of the lines of code for developing the new program, as far

as the concept of reusing components is concerned. Research presented in this thesis also

shows that following these metrics makes it easy to discover the software products that are as

needed, review software development documents involving software development processes

(Mousaei, 2020).

1.2.4 Software Process Metrics

The software development process contains different phases; these include identifying the

problem to be solved, the software analysis phase, the software design phase, and the software

implementation phase (Bondarev et al., 2019). Software process metrics provide a measure of

all the phases of software development, from requirement gathering to implementation

(Kassab et al., 2016). The applicability of software process metrics is to understand what

levels of components are needed and the resources that will be involved in the software

development. These include stakeholder capability and efficiency, management goals, and

expectations from each phase of the software development process, including the software

analysis phase, the software design phase, and the software implementation phase. Therefore,

software process metrics provide a measure of all the phases of software development, from

requirement gathering to implementation. Through measuring all the phases, it is easy to

control and follow each process (Abdullah et al., 2015). The applicability of software process

metrics makes it easy to understand what levels of components are needed and the resources

that will be involved in the software development. These include stakeholder capability and

efficiency, management goals, and expectations from each software development process

(Rajabli et al., 2021).

This study shows that there is a need to improve the software process to produce higher-

quality software and that it is easy for the software development organization or developers to

control their software processes once all of the processes included in the software process are

measured. And adhering to these metrics will aid in avoiding the consequences of project

9

failure. Furthermore, using verification and validation techniques to improve software

processes has a number of advantages, including the ability to easily trace the problem by

reviewing each metric involved in the software development process (Rahim et al., 2017)

(Bäckström, 2022).

These metrics increase the software productivity of the software products through software

process improvement approaches (Poudel, 2018). It is easy to have higher-quality software,

and the bugs and defects can be discovered easily when injected into or removed from the

software system. This can be done through the use of good measurement metrics and the

control of software process improvement (Beyer, 2022a).

Figure 1.1: Usages Process Related Quality Attribute

10

Figure 1.2: Usages Product Related Quality Attribute

1.2.5 Software Verification & Validation

Table 1.1: Methods of Validation

SN Validation Method Action performed by Details
1 Unit Testing Developers A single program, module,

or unit of code is tested.
This is usually performed
by the software's creator to
ensure that it works as
intended.

2 Integrated testing Involves Software developers
with the help of a third-party
testing team

The evaluation of related
programs, modules, or code
components. Confirms that
the system's various
components interact in
accordance with the
system's design.

3 System Testing Involves Team of Independent
Testers

An entire computer system
is put through its paces.
Functional and structural
testing, such as stress
testing, are examples of this
type of testing. Validate the
system's specifications.

4 User acceptance Testing Involves Independent testing
team with user support

The process of ensuring that
a computer system or
elements of a computer
system will work in the
system regardless of the
system requirements

11

1.2.6 Methods of Verification

Table 1.2: Methods 0f Verification

SN Verification Method Details
1 Self-Review

Self-review is highly flexible
with respect to time and
defect finding, as one need
not take an appointment for
doing it. Defect found in self-
review can help in self-
improvement.
Understanding-related
defects may not be found in
self-rev

2 Peer Review Peer reviews are conducted
frequently in SDLC at
various stages of
development.

3 Online Review

Author and reviewer meet
together and review the work
product jointly

4 Offline Review

Author informs reviewer that
product is ready and reviewer
may review product as per
his time availability

5 Walkthrough Walkthrough is a semi-
formal type of review as
involves larger team along
with the author reviewing a
work product.

6 Inspection It is a formal review where
external people involved as
„inspector‟. Defects are
recorded but solutions are not
given by „subject matter
experts‟. This helps the
organization to initiate own
action plan for fixing the
defects.

1.2.7 Software Process Improvement

Software process improvement, focusing on improving the software processes with the intent

of increasing the quality of the software products (Peddireddy & Nidamanuri, 2021). There

are many software process improvement approaches (Mousaei, 2020). That means focusing

on increasing the productivity of the software products within the organization, from the

12

individual level to the organizational level. Personal software processes and team software

processes are the approaches that focus on increasing productivity for individual work or team

work so that performance can be increased. That means focusing on increasing the

productivity of the software products within the organization, from the individual level to the

organizational level. Personal software processes and team software processes are the

approaches that focus on increasing productivity for individual work or team work so that

performance can be increased (Gren & Antinyan, 2017). These are frameworks for increasing

performance at each stage of development (Hunter et al., 2011). Many approaches to software

process improvement have been proposed by the Software Engineering Institute. The

Capability Maturity Model is one of the process improvement frameworks suggested by the

Software Engineering Institute for software products (Weber et al., 1993). There are many

software process improvement approaches (Strazdi & Arnicane, 2018). That means focusing

on increasing the productivity of the software products within the organization, from the

individual level to the organizational level. Personal software processes and team software

processes are the approaches that focus on increasing productivity for individual work or team

work so that performance can be increased (Raulamo-Jurvanen et al., 2019). That means

focusing on increasing the productivity of the software products within the organization, from

the individual level to the organizational level. Personal software processes and team software

processes are the approaches that focus on increasing productivity for individual work or team

work so that performance can be increased. These are frameworks for increasing performance

at each stage of development (Rahim et al., 2017). Many approaches to software process

improvement have been proposed by the Software Engineering Institute. The Capability

Maturity Model is one of the process improvement frameworks suggested by the Software

Engineering Institute. This is the model that is used to determine the process maturity of the

software development organization. Also, the [personal capability maturity model] is the

model for improving the level of individual within the organization; this means that people

working within the software engineering area are required to improve their competence and

have new knowledge according to changes in software engineering technology (Poudel,

2018).

Software process improvement approaches are iterative and continuous. This includes and

uses "plan-do-check-act (PDCA) processes (Hynninen et al., 2018). Software process

improvement is an iterative approach to software development. Through this approach, there

13

is no time limit on the application for software process improvement (Bäckström, 2022). It is

possible to restart with the planning stage of the cycle according to what is required to be

done in order to meet the goal of the software project. This development cycle is focused on

meeting the specified requirements. Also, the time spent on each stage of the cycle depends

on what activities have to be done for each stage. The software development cycle has no time

constraints and is focused on problem solving. If it happens that the problem is not solved

after the completion of all stages of the cycle, the cycle will restart.

1.2.8 Plan-Do-Check-Act (PDCA)

The cycle consists of four steps, as explained in more detail below:

Figure 1.3: The Cycle of Plan-Do-Check-Act

1.1.6.2 Planning: This is typically used to suggest and identify processes that should be used

to improve the software process; additionally, this step is used to define the problems that

should be solved and find the source of the problems.

1.1.6.3 Doing: This section includes the implementation of the processes and solutions

suggested in the planning section. This is an important part, where the implementation of the

suggested solution should be done carefully for a better solution.

1.1.6.4 Checking: This part is used to check if the solutions have been implemented correctly

or not. These include steps such as reviewing previous measures, which can be done ahead of

14

time. The aim of reviewing is to see if the specification is related to the solution implemented

or not.

1.2.9 Acting: During the acting process, we focus on following up on all implemented

solutions, such as the suggested solutions above.

The Plan-Do-Check-Act (PDCA) cycle that helps to understand inputs and outputs is used

during the development of software products. This shows if the solutions obtained are

working as required, efficiently, and reliably for the suggested systems. Focusing on the

improvement of the software processes, we are focusing on selecting appropriate processes

and proper methods that should be used for improving the quality of the software products

(Peddireddy & Nidamanuri, 2021). This includes comprehending the software processes in

use at the time and altering them to improve performance.

The goal of software process improvement in the software industry is to help them improve

the performance and quality of their products in response to customer demands. Also improve

individuals' skills and performance in software engineering areas.

1.3 Related Studies

Bäckström (2022) conducted a survey on software testing practices in Finland. The finding

was that over two-thirds of surveyed populations utilize test levels but that results can vary

substantially depending on the surveyed community, with the exception of unit testing. In

decreasing order, functional testing, regression testing, performance testing, and usability

testing are the most commonly used test types, with security testing being used less

frequently.

Carlos & Ibrahim, (2021) conducted a study to provide a summary of Cameroonian practices

for software testing. According to the results' interpretation, software testing is still a

comparatively small part of software development in Cameroon, even though it occasionally

occurs concurrently with development activities. For beta testing, many pass on the price of

testing to the clients. This suggests conducting further research to determine, with supporting

experimental evidence, the contexts in which the use of best practices and test automation

results in a lower.

15

Hynninen et al. (2018) conducted research on software testing practices and concluded that;

first, the use of automation in testing has increased. Automation has become more popular at

all levels of testing in recent years. Second, the use of formal software process models and

capability maturity models appears to have decreased, while testing tools have increased in

use and effectiveness. This change is reflected in the organizational considerations around

testing tools: the tools no longer limit the organizational unit as much as they did in 2009, but

configuration issues and a lack of platform support have become more common in exchange.

Regulwar & Gulhane, (2010) conducted a study on software testing practices, it was

discovered the majority of testing procedures and methods haven't changed all that much in 20

years. In addition to using the right procedures, effective testing calls for a tester's creativity

and experience. Testing entails more than just fixing bugs. Testing serves other purposes

besides identifying and fixing flaws. The measurement of reliability, validation, and

verification are also done using it. Testing is costly. Saving money and time can be

accomplished through automation.

Poudel, (2018) conducted a study on Aligning Requirements with software testing for

Software Engineering Process Improvement The findings were that the greatest problems

were incomplete and ambiguous requirements; lack of knowledge about the specific system;

communication gaps; and unclear requirements that could cause more problems for the

project. The conclusion of the findings was that improving collaboration between the teams,

clear communication, and interaction are important solutions to most software development

problems. A requirements walkthrough and inspection are needed.

Strazdi & Arnicane (2018) conducted a survey of what Software Test Approaches, Methods,

and Techniques are Actually Used in Software Industry? In the IT industry and they came to

the conclusion that functional testing is the most commonly used testing method in Latvia's IT

industry, with only 52.63 percent of respondents claiming they use non-functional testing

frequently. Non-functional testing has some advantages, such as determining the system's

overall performance and determining if it performs as expected under normal and expected

settings.

Garousi, Felderer, & Kuhrmann (2020) concluded that in software testing, industrial and

academic focus areas are disjointed. While academicians are more interested in theoretically

16

difficult challenges, test engineers in practice are looking for ways to increase testing efficacy

and efficiency.

Latif & Rana, (2020) conducted a preliminary survey on software testing techniques in

Pakistan. A survey was performed in February of 2018. Despite the fact that the IT sector in

Pakistan is still in its infancy, 70 firms answered and the results were collated. In conclusion,

the have learned that Pakistan IT enterprises are tiny and inexperienced in applying a standard

testing technique.

 Quesada-López et al.(2019) conducted as survey on the characterization of software testing

practices in Costa Rican Replication. The finding there was a gap between the state of the art

and the state of the practice in software testing. The data supports the idea that organizations

mostly employ ad hoc criteria to decide when to end testing.

In 2014, a study of unit testing practices was conducted in Sweden. According to the survey's

author, Andersson & Runeson, (2014), participants agreed on the scope of unit testing, but

they disagreed on whether the test environment is an isolated harness or a partial software

system. Furthermore, both technically and strategically, unit testing is a developer issue. Unit

testing methodologies and practices appear to be unaffected by test management or quality

management. Although unit tests are structural or white-box in nature, developers rarely

assess their completion in terms of structural coverage. The majority of the businesses polled

wanted to automate their unit tests, but they were having problems distributing best practices

across their organizations.

Seth et al., (2014) conducted research on the organizational and customer-related challenges

of software testing. The study finds that the development of software quality is an

information-intensive process that is influenced by organizational structures and information

flow within firms. The project manager acts as a mediator between the development teams

and the clients. Their choices could enhance or degrade software quality and productivity.

Kassab et al., (2017) conducted a survey on software testing practices in the industry. The

findings show that systematic test case design and data definition are standard techniques.

Systematic test case design involves using a system for identifying test cases in order to

reduce the number of test cases required without sacrificing test efficacy

17

Vukovic et al. (2020) conducted a survey, and the result showed that most of the techniques in

the ISO/IEC/IEEE 29119 testing standard are used to a high level.

Raulamo-Jurvanen, Hosio, and Mäntylä (2019) conducted a study survey on Practitioner

Evaluations of Software Testing Tools, and the finding was, there is a need for practical and

efficient techniques to conduct tool evaluations that offer software practitioners reliable

empirical evidence. More research is required to obtain a better understanding of the situation

and to establish more definitive, tool-specific evidence.

Hynninen et al., (2018) conducted research on software testing practices and concluded that;

first, the use of automation in testing has increased. Automation has become more popular at

all levels of testing in recent years. Second, the use of formal software process models and

capability maturity models appears to have decreased, while testing tools have increased in

use and effectiveness.

M. et al., (2018) conducted the survey in Bangladesh According to the findings of the survey;

many software development companies lack a dedicated testing team. This finding could

point to a lack of maturity or financial resources to support a dedicated testing team (M. et al.,

2018). They discovered that there are more developers than testers. In addition, they

discovered that the tester-to-developer ratio is usually 1:2. However, in some cases, the ratio

is 1:10, which is clearly stressful for a tester and for an organization's overall quality goal

Rahim et al., (2017) conducted the survey in Bangladesh According to the findings of the

survey; many software development companies lack a dedicated testing team. This finding

could point to a lack of maturity or financial resources to support a dedicated testing team.

They discovered that there are more developers than testers.

Nadu & Nadu (2019) conducted a study in the field of software testing, and the finding was

that software testing is usually less formal because of the tough practice and methodologies of

testing. Software testing is a collaborative project in which each individual must play their

part in producing bug-free software. Though testers aim at producing 100% bug-free software,

there will be defects found during the maintenance. Efforts should be made to remove bugs

and produce quality software within the specified time and cost.

18

Isong & Ekabua, (2015) conducted a study on the State-Of-The-Art in Empirical Validation of

Software Metrics for Fault Proneness the finding was that the object-oriented paradigm has

gained widespread popularity, coupled with software dependability. It is important that high

software quality should not be compromised. Object-oriented design metrics should always be

used to assess software quality during software development.

Lee, Kang, and Lee (2012) conducted a survey with a wide range of firms and experts from

1000 companies working in software testing to identify existing practices and potential for

software testing methodologies and tool improvement. The results of the poll showed five key

conclusions about current software testing methodologies and tools, as well as areas for

improvement: Low utilization of software testing techniques and tools, challenges caused by a

lack of software testing methods and tools, limited use of testing tools, There is a desire for

interoperability support between software development and testing techniques and tools, as

well as instruction on how to evaluate software testing methods and tools and characterize

their capabilities.

There are many verification and validation processes that already exist, and software

developers and engineers apply them to the software development process (Upadhyay, 2012)

(M. Altaie et al., 2020). There is still a problem when there is a change in requirements

(Poudel, 2018) (Al Neaimi, 2012) (Quesada-López et al., 2019) (Dias-Neto et al., 2017)

(Vasanthapriyan, 2018). It seems verification and validation processes are not flexible enough

to adapt when there are changes in software requirements (Bjarnason et al., 2014).

1.4 Statement of the Problem

Regardless of the use of software testing, verification, and validation activities in the software

development process, there are still difficulties in helping software development organizations

deliver quality software that is affordable and timely to end users. Meanwhile, verification

and validation methods and tools are not flexible enough when there are changes in software

system requirements. This study fills these gaps by improving the existing verification and

validation state of practices in software development organizations by identifying emerging

issues in the verification and validation activities in software development processes,

developing and recommending the best solutions, and upgrading means of enhancing software

quality, reducing costs, and saving time.

19

1.5 Significance of the Study

Software development processes have become complex and challenging to develop and

maintain because of scalability issues. Software verification and validation is a demanding

task, and the challenges of verification and validation of large-scale software cannot be

overemphasized due to the large test suite size. This study conducted a cost-effective software

verification and validation study to improve the state of the practice and identify cost-

effective software verification and validation techniques that produce the same quality

product in the same amount of time at a lower cost. The study provides alternative software

verification and validation techniques and approaches to software quality management that

help software development companies or organizations develop higher-quality software

delivered on time that meets the requirements and specifications of their customers or end

users. The study also documents the challenges and possible mitigation measures faced by

software development companies and organizations in terms of software verification and

validation activities during the software development process.

1.6 Study Objectives

1.6.1 Main Objective

The main objective of this study is to improve software verification and validation state of the

practices in software development companies

Specifically, the following objectives have been sought to achieve:

i. Investigate the status of existing software verification and validation practices in

software development companies.

ii. Identify challenges concerning existing software verification and validation practices

in software development companies.

iii. Propose solutions for existing software verification and validation practices challenges

in software development companies.

iv. Evaluate the Proposed solutions for existing software verification and validation

challenges in software development companies.

1.6.2 Research Questions

The following research question used to design to meet the study objects

i. How do software development companies perform verification and validation?

20

ii. What are the challenges concerned existing software verification and validation

practices in software development companies?

iii. It is possible to propose solutions for the existing software verification and validation

practices challenges identified in (ii)? If yes, what possible solutions are there?

iv. How do you compare the efficiency and effectiveness of proposed solutions for the

existing software verification and validation practice challenges?

1.7 Scope of the Study

This study focus on improving software verification and validation practices. This study is

limited to research on the verification and validation state of practices and their activities in

software development companies in Tanzania. The study conducted to eight software

development organizations in Tanzania engaged with software development. The studies

identified activities conducted during software development and describe verification and

validation testing tools and techniques. This study is limited to research on the software

verification and validation state of practices and their activities in software development

organizations.

21

CHAPTER TWO

LITERATURE REVIEW

2.1 Definition of Key Terms and Concepts

Different scholars and academicians have defined software verification and validation in

various ways. For example, M. Altaie et al. (2020) have defined verification as a set of

activities or procedures that insure correctness at each stage or phase in the software

development process. Or it is the set of activities which compare software products related to

the life cycle of the software or system against needed characteristics (Mousaei, 2020). While

validation can be defined as the set of activities guaranteeing that the system has the capacity

to accomplish its intended goal and use (meeting the requirements of stakeholders or

customers) in the intended operational environment (Upadhyay 2012), software validation has

been the process of evaluating software at the end of its development to ensure that it has been

free from failures as well as complying with its requirements (Schumann & Goseva-

Popstojanova, 2019) (Ullah Khan et al., 2015).

According to Upadhyay (2012), verification is about building the software product right ("Are

we building the system right?") and its conformation to the specification, while validation is

about building the right software product ("Are we building the right software product?"), and

the software product should do what the user really requires. Verification should check

whether the program meets its specifications as written in the requirements document. This

may involve checking that it meets its functional and non-functional requirements. Validation

ensures that the product meets the customer's expectations. This goes beyond checking that it

meets its specifications; as we have seen, system specifications don’t always accurately reflect

the real needs of users.

According to Markosian et al. (2011), verification and validation is a systematic program of

review and testing activities performed throughout the development life cycle for digital

system hardware and software. Verification is the process of evaluating a system or

component during development. Validation is the process of evaluating a system or

component at the end of the development process under conditions representative of its

intended use.

22

2.2 Software Verification and Validation

The difference between the two terms is mainly based on the role of specifications. Validation

is the process of checking whether the specification captures the customer’s requirements,

while verification is the process of checking that the software meets the specification (Anwar

& Kar, 2019). Verification includes all the activities associated with producing high-quality

software; these include testing, inspection, design analysis, specification analysis, and so on

(Markosian et al., 2011; Upadhyay, 2012). It is a relatively objective process, in that if the

various products and documents are expressed precisely enough, no subjective judgments

should be needed in order to verify software (Vukovic et al., 2020).

In contrast, validation is an extremely subjective process. It involves making subjective

assessments of how well the proposed system or software addresses a real-world need (Anand

& Uddin, 2019). Validation includes activities such as requirements modeling, prototyping,

and user evaluation. In a traditional phased software lifecycle, verification is often taken to

mean checking that the products of each stage or phase satisfy the requirements of the

previous stage or phase.

Validation is relegated to just the start and end of the project: requirements analysis and

acceptance testing. This view is common in many software development engineering

textbooks and is misguided (Rajabli et al., 2021). It assumes that the customer’s requirements

can be captured completely at the start of a project and that those requirements will not

change while the software is being developed. In practice, the requirements change

throughout a project, partly in reaction to the project itself: the development of new software

makes new things possible. Therefore, both validation and verification are needed throughout

the lifecycle.

2.3 V-Model in Software Development Verification and Validation Activities

The V-Model used for software verification and validation activities is as follows: Business

requirement analysis, system design, architectural design (high level design), module design

(low level design), and coding phases are verification phases, while unit testing, integration

testing, system testing, and acceptance testing are validation phases.

23

Figure 2.1: Describes the activities and procedures for software verification and

validation, as well as how testing can be integrated into each phase of the

software development process.

2.4 Time for Software Development

Empirical studies have shown that in many software development organizations, most of a

project's time is spent on the verification and validation activities. (Andersson, 2003) (Beyer,

2022) discovered that software development organizations in their software development

(Unterkalmsteiner, 2015)

Projects spent up to half of their projected time on verification and validation activities. Past

studies have shown that different phases of the software development have their own

verification and validation processes (M. Al Atitaie et al., 2020; Jan et al., 2016), so if you

combine all phases from the designing stage until the product is in the market, nearly half of

the time used in the development of the product is used for verification and validation

activities.

24

2.5 Quality of the Product

Conformance to explicitly stated and agreed functional and non-functional requirements and

specifications may be referred to as "quality" for the software product offered to prospective

customers or end users (Limaye, 2009) (Babbar, 2017). Software quality interacts with each

phase of every software development process (P. Yadav & Kumari, 2015). Planning should

occur in the initial phase of a software development project and address the methods and

techniques to be used in each phase (Malviya, 2019) (Abbas, 2018). A description of each

product should be defined in order to provide a basis for objectively identifying satisfactory

completion of the phase (Upadhyay, 2012; Brown, 1987).

The software quality management processes must address how well software products will, or

do, satisfy customer requirements, provide value to the customers, and provide the software

quality needed to meet software requirements and specifications (Jamil et al., 2017). Some of

the specific Software Quality Management processes are defined in the standard (IEEE

12207.0-96), which includes the following aspects: Quality Assurance, Verification Process,

Validation, Review, and Audit Process (Y. Gupta, 1989) (P. Yadav & Kumari, 2015)

Software quality assurance processes provide assurance that the software products and

processes in the software life cycle conform to their specified requirements by planning,

enacting, and performing a set of activities to provide adequate confidence that quality is

being built into the software (Seth et al., 2014; Peddireddy & Nidamanuri, 2021). Software

quality assurance seeks to maintain product quality throughout the development and

maintenance of the product through the execution of a variety of activities at each stage of

product development, which can result in the early identification of problems, an almost

inevitable feature of any complex activity (P. Yadav & Kumari, 2015) (Edvardsson, 2006).

Verification and validation address software product quality directly and use testing

techniques that can locate defects so that they can be addressed (Mendoza, Souza, et al., 2019;

Peddireddy & Nidamanuri, 2021). It does, however, evaluate intermediate products and, in

this capacity, intermediate steps in the software life cycle processes.

25

2.6 Empirical Review

2.6.1 Empirical Studies Conducted in Various Countries and Scales.

Several studies have been conducted to identify the software practices and challenges of

software verification and validation in several countries. However, no such study on software

verification and validation practices in Tanzania has ever been conducted; some of the studies

and their findings include Bäckström (2022), which investigated software testing practices in

Finland, and Latif and Rana (2020), which investigated software testing techniques in

Pakistan. Spanish researchers (Fernández-Sanz et al., 2005; Fernández-Sanz et al., 2009),

Swedish researchers (Runeson, 2006; Grindal et al., 2006; Engström and Runeson, 2010),

Korean researchers (Park et al., 2008; Yli-Huumo et al., 2014), Sri Lankan researchers

(Vasanthapriyan, 2018), Geras etBhui From 2004 to 2017, a set of replications surveying

testing practices in Canada was conducted (Geras et al., 2004; Garousi and Varma, 2010;

Garousi and Zhi, 2013; Garousi et al., 2017); and from 2006 to 2018, some studies of software

testing practices in South America were conducted (Dias-Neto et al., 2006; De Greca et al.,

2015; Dias-Neto et al., 2017According to the findings of the software testing practices and

challenges, industrial and academic focus areas are disjointed.While academicians are more

interested in theoretically difficult challenges, test engineers in practice are looking for ways

to increase testing efficacy and efficiency (Garousi et al., 2020). There is a gap between the

state of the art and the state of the practice of software testing (Quesada-López et al., 2019).

The data supports the idea that organizations mostly employ ad hoc criteria to decide when to

end software testing (Quesada-López et al., 2019). Software testing is still a comparatively

small part of software development, even though it occasionally occurs concurrently with

development activities. There is a need for practical and efficient techniques to conduct tool

evaluations that offer software practitioners reliable empirical evidence (Raulamo-Jurvanen et

al., 2019), and many software development companies lack a dedicated software testing team.

There are more developers than testers (Rahim et al., 2017; M. et al., 2018). This finding

could point to a lack of maturity or financial resources to support a dedicated testing team.

More research is required to obtain a better understanding of the situation and establish more

definitive, tool-specific evidence. For beta testing, many pass on the cost of the test to the

clients. This suggests conducting further research to determine, with supporting experimental

evidence, the contexts in which the use of best practices and test automation results in a lower

cost (Carlos & Ibrahim, 2021).

26

Software verification and validation are usually less formal because of the tough practices and

methodologies of software testing. Software testing is a collaborative project in which each

individual must play their part in producing bug-free software (Polamreddy & Irtaza, 2012).

Though testers aim to produce 100% bug-free software, there will be defects found during

maintenance. Efforts should be made to remove bugs and produce quality software within the

specified time and cost (Nadu & Nadu, 2019).

Over two-thirds of the people polled use test levels. In decreasing order, functional testing,

regression testing, performance testing, and usability testing are the most commonly used test

types, with security testing being used less frequently (Bäckström, 2022). Unit testing

methodologies and practices appear to be unaffected by test management or quality

management. Although unit tests are structural or "white box" in nature, developers rarely

assess their completion in terms of structural coverage. The majority of the businesses polled

wanted to automate their unit tests, but they were having problems distributing best practices

across their organizations (Andersson & Runeson, 2014). The use of automation in testing has

increased. Automation has become more popular at all levels of testing in recent years.

Second, the use of formal software process models and capability maturity models appears to

have decreased, while testing tools have increased in use and effectiveness. This change is

reflected in the organizational considerations around testing tools: the tools no longer limit the

organizational unit as much as they did in 2009, but configuration issues and a lack of

platform support have become more common in exchange (Hynninen et al., 2018). The

majority of testing procedures and methods haven't changed all that much in 20 years. In

addition to using the right procedures, effective testing calls for a tester's creativity and

experience. Testing entails more than just fixing bugs. Testing serves other purposes besides

identifying and fixing flaws. The measurement of reliability, validation, and verification are

also done using it. Testing is costly. Saving money and time can be accomplished through

automation (Regulwar & Gulhane, 2010). The greatest problems are incomplete and

ambiguous requirements, a lack of knowledge about the specific system, communication gaps,

and unclear requirements that could cause more problems for the project. Improving

collaboration between the teams, clear communication, and interaction are important solutions

to most software development problems. A requirements walkthrough and inspection are

needed (Poudel, 2018).

27

Functional testing is the most important type of testing in organizations (Strazdi & Arnicane,

2018). This is reasonable, considering that without functionality, all other non-functional parts

of a system become meaningless. Functional testing is followed by user acceptance testing,

which is becoming increasingly important due to the growing importance of users (ISTQB,

2018). Agile methodologies are becoming increasingly popular, emphasizing the necessity for

suitable testing processes and techniques as well as testing competency certification. (1) In

over 80% of cases, in-house test teams are in charge of software testing. The fact that the test

team does not report to development in the majority of cases (84%) confirms the adoption of

role segregation. (2). It is becoming more common to use testing tools for defect tracking, test

execution, test automation, test management, performance testing, and test design. With a 72

percent usage rate, test automation has become fairly common in the market. 40% of

According to the responders, the percentage of automated test cases in use is far above 20%.

(3) Test tool and automation consulting is another popular external service, with test

automation being the area with the largest room for improvement (ISTQB, 2016). The

development of software quality is an information-intensive process that is influenced by

organizational structures and information flow within firms. The project manager acts as a

mediator between the development teams and the clients. Their choices could enhance or

degrade software quality and productivity (Seth et al., 2014). The object-oriented paradigm

has gained widespread popularity, coupled with software dependability. It is important that

high software quality not be compromised. Object-oriented design metrics should always be

used to assess software quality during software development (Isong & Ekabua, 2015).

Systematic test case design and data definition are standard techniques. Systematic test case

design involves using a system for identifying test cases in order to reduce the number of test

cases required without sacrificing test efficacy (Kassab et al., 2017). There is low utilization

of software testing techniques and tools, challenges caused by a lack of software testing

methods and tools, limited use of testing tools, a desire for interoperability support between

software development and testing techniques and tools, as well as instruction on how to

evaluate software testing methods and tools and characterize their capabilities (Lee et al.,

2012). IT enterprises are tiny and inexperienced in applying a standard testing technique

(Latif & Rana, 2020).

28

2.7 Theoretical Framework

Software verification and validation is the process of not only finding the errors, but also

revealing at what level the quality has been achieved (Rajabli et al., 2021). Hence, software

verification and validation provide information about defects and problems in software or

products and simultaneously evaluate the achieved quality. Much effort is devoted to the

improvement of areas such as analysis and requirements, design, and code reviews. However,

in the spirit of continuous improvement in software quality, there is not much effort to

improve its testing techniques to reduce customer-found defects.

2.8 Conceptual Frame Work

In this study, the conceptual frame work has been developed to describe the relationship

between various phases of software development project. In the first part of the conceptual

framework we have companies, organizations and small scale business enterprise which are

engaged with software development. We also have requirements, specification and standard

that exist in the market. The second section describe software development process where

verification and validation is done in every stage of the software development process. In the

third part we have testing tools, technique, testing knowledge skills and experience which will

lead to quality of the software or product. Figure below illustrate the conceptual frame of the

study.

Figure 2.2: Conceptual Framework

29

CHAPTER THREE

METHOD AND MATERIALS

 3.1 Study Area

This study was conducted in four regions in Tanzania, namely Dar es Salaam, Mwanza,

Arusha, and Dodoma. These areas have been purposefully chosen, as they are where most

software development organizations are located.

3. 2 Research Methodology

Empirical research in the area of computer science has evolved over the last decades

(Raulamo-Jurvanen, 2020). Empirical studies in computer science have become a key

approach for researchers who want to understand, evaluate, and develop methods in the field

(Persson, 2019). An empirical study is basically a systematic observation that lets the

researcher gain quantitative or qualitative evidence concerning the object under study

(Seuring et al., 2021) (Kiger & Varpio, 2020). Thus, the research allows for the confirmation

of theories and hypotheses based on measurable observations rather than belief (Casteel &

Bridier, 2021).

Even though the field has evolved, empirical computer science research has been criticized for

being immature. However, recent guidelines for evaluating situations, methods, and

techniques are proposed in several directions (Neri de Souza et al., 2016; Person, 2019). The

research methodology is based on the same principles that can be used in other areas, like

social, medical, and psychological research, but when criticized, it is compared to these more

mature research fields. The software engineering field is relatively young when compared to

these research fields (Eungoo & Hwang, 2021).

3.3 Methodological Approach

The research presented in this thesis employed two approaches: fixed and flexible research

designs (Vaismoradi & Snelgrove, 2019). In fixed-design research, consider doing a large

amount of pre-specification about what to do and how to do it before getting into the main

part of the research study (Snyder, 2019). The intention of the approach is that we need to

know what to do and collect all the data before starting to analyze it (Patel & Patel, 2019).

Considering the use of fixed design on quantitative data and statistical analysis in contrast to

flexible design, which is also referred to as qualitative design, the flexible design often results

in qualitative data, which is typically non-numerical, and much less pre-specification is used;

30

the design evolves as the research proceeds (Persson, 2019), and the data collection and

analysis are intertwined (Ridder, 2017).

3.4 Research Design

The research was carried out in eight Tanzanian software development organizations using a

multiple-case study design. According to Ababacar, Sy Diop, and Liu (2020), a research

design is a specific procedure used in carrying out a research process. The multiple case study

design used in this study was chosen because it facilitated the development of deeper insights

and better exploration of multiple units of analysis (Ridder, 2017; Breink, 2018) through the

empirical study of software verification and validation methods and tools. The researchers

employed multiple case study designs to combine information from multiple units of analysis

with multiple data sources to gain in-depth information on the improvement of the verification

and validation practices for industry.

3.5 Surveys

A survey is considered a strategy with a fixed design (Patel & Patel, 2019), but it can also

have a flexible design (Islamia, 2017) (Ponto, 2015). The main features of surveys are the

collection of data from a relatively large number of individuals and the selection of

representative samples of individuals (Lu & Abeysekera, 2020). Surveys are very common in

other areas, like computer science and other fields. The main features of surveys are the

collection of data from a relatively large number of individuals and the selection of

representative samples of individuals (Koshti, 2013). Surveys are very common in other areas,

like computer science and other fields (Bryant, 2006). It is not as easy to control variables that

influence the studied field in a survey as they are in other investigation methods. Interviews

and questionnaires are important tools for gathering data in a survey (Lu & Abeysekera,

2020). The results are analyzed to be generalized according to the specified sample size of the

population. Considering that any survey results obtained in one software development

organization are difficult to find in other software development organizations

The survey method described by Ponto (2015) was used as the research method in this study.

The objective of a survey method is to collect information from people about their feelings

and beliefs. Furthermore, when information should come directly from the people, a survey is

most appropriate (Snyder, 2019; Mathiyazhagan, T., 2010). B. Kitchenham et al. (2009)

divide comparable survey studies into exploratory studies, from which explanations and

31

estimates can be drawn, and confirmatory studies, from which strong conclusions can be

drawn.

3.6 Literature Survey

The main literature sources are research databases with connected search engines used to

collect secondary data about the research presented in this thesis. A literature study aims to

map out the current publications relevant to software verification and validation practices with

the help of keywords and prior knowledge. A literature review concentrated on peer-reviewed

sources to maintain relevance and quality as the input for additional information processing

(Torres-Carrion et al., 2018). A literature survey was conducted in accordance with Seuring et

al. (2020) and Torres-Carrion et al. (2018) standards in order to establish a theoretical basis

for software verification and validation practices.

3.7 Data Collection and Analysis

Thematic analysis was used to analyze the data obtained through interviews and

questionnaires (Nowell et al., 2017). As a result, themes generated from the collected data will

be presented and discussed in order to improve the state of practice in software verification.

Thus, the process involved familiarizing with the data, generating initial codes, searching for

themes, reviewing the themes, defining and naming themes, and producing a report

(Vaismoradi & Snelgrove, 2019; Marttinen et al., 2020) (Kiger & Varpio, 2020).

Without good analysis and interpretation of the collected data and information for all

activities of this prospective study, the essence of the data will not be revealed, nor will it be

possible to communicate. However, there might not be a clear point in time when the data

collection ends and analysis begins (Ciesielska & Jemielniak, 2017). With a flexible design,

the data collection and analysis are overlapping, which may also result in a higher quality of

both the collected material and the analysis (Centers for Disease Control and Prevention,

2018). When not focusing on confirming predefined solutions and initial interpretations, the

overlapping may give new insights, but alternative explanations will not be revealed, nor will

it be possible to communicate (Zevalkink, 2021). However, there might not be a clear point in

time when the data collection ends and analysis begins. With a flexible design, the data

collection and analysis are overlapping, which may also result in a higher quality of both the

collected material and the analysis (Kawulich, 2005). When not focusing on confirming

predefined solutions and initial interpretations, the overlapping may give new insights and

32

alternative explanations (Islamia, 2017). In a study with a fixed design, however, the analysis

occurs after all of the data has been collected (Zevalkink, 2021). The analysis of quantitative

data can range from being simply organized to being exposed to some complex statistical

analysis. However, qualitative data should also be systematically analyzed.

3.7.1 Questionnaire

This study used questionnaires to collect qualitative data about concerns, ideas, and

assessments. Utilizing questionnaires helped quantify certain qualitative data. Questions were

permitted on questionnaires. Abawi (2017) explains that questionnaires are sets of questions

that are sent to the specified respondents, who answer them and return the filled

questionnaires to the researcher. Over 100 people were able to provide feedback.

3.7.2 Results Observations:

Observations for data collection were employed and used in the exploratory method to

observe what was going on in a certain situation and watch the actions and behaviors of

people as they responded (Ciesielska & Jemielniak, 2017). What has been observed is then

described, analyzed, and interpreted. Much research in life science involves direct or indirect

observations of humans, but for example, experiments in computer science represent a kind of

controlled and well-accountable observation (Zevalkink, 2021).

The observation method employed in this thesis is mainly of the type of participatory

observation (Ciesielska & Jemielniak, 2017), where the observer participates in the group

under study.

3.7.3 Interviews:

The study employed the interviewing method to obtain more qualitative data from the

participants. Semi-structured interviews are the research method used in this study (European

Commission, Eurostat, 2017). Although the interviewee will receive the questions in advance,

there will also be time for discussion, clarification, and follow-up questions.

Considering that the advantage of data collection through interviews is the flexibility of the

data and participants, the study's researchers have the option of following up on the ideas

provided, and using the interview method, it is simple to interpret feelings (Quantitative

Research Methods, n.d.). All answers given in a questionnaire must be interpreted on their

own, while in an interview, attendant questions can be given and the answers thereby catch

33

subtler information. On the other hand, interviews are rather time-consuming (Kiger &

Varpio, 2020). There are several necessary activities that should be conducted: the

preparation, the execution, and the processing of the data. It is also a subjective technique,

with a risk of bias both from the interviewer's and the interviewee's point of view.

It was observed that the more standardized the interview is, the easier it is to process the data.

The fully structured interview is similar to a questionnaire. The semi-structured interview has

predetermined questions (Ridder, 2017), but the interviewer can change the order as well as

the wording of the questions, and explanations can be given (Mohajan, 2018) (Dawadi & Giri,

2021). The unstructured interview frequently has a topic about which the interviewer asks

open-ended questions.

The study employed the interviewing method to obtain more qualitative data from the

participants. (European Commission, Eurostat, 2017). Although the interviewee received the

questions in advance, there was also time for discussion, clarification, and follow-up

questions.

In order to address the study objective, the following theme and sub-themes were used and

covered during interviews:

Interview Theme: Improving Software Verification and Validation Practices in Software

Development Organizations

Among the sub-themes are:

i. Software verification and validation methodologies and techniques: methodology,

barriers, benefits, and expected improvement areas

ii. Verification and validation tools: tools used, tool objectives, and automated tool issues

iii. Verification and validation standards: internal standards as well as implementation

issues

iv. Challenges of software verification and validation in software development

organizations

v. Software verification and validation processes and metrics

34

3.7.4 Experiment

Experimentation within software verification and validation practices is conducted.

Experimentation addresses qualitative research questions (Neri de Souza et al., 2016).

Experimentation was not used in its full implementation. However, experimentation will be

within the scope of the study.

In this thesis, experiments presented compare software design review and software code

review as verification and validation techniques for software process improvement. And for

improving the quality of the software products, the main intention of using the experiment

method was to establish a means of obtaining results on the applicability of software

verification and validation practices in software development organizations.

3.8 Sampling Techniques

Purposive sampling was used to recruit managers, team leads, development team members,

and software quality assurance team members for the study. Purposive sampling (also known

as judgmental, selective, or subjective sampling) is a sampling approach in which samples are

selected based on pre-determined criteria (B. Yadav & Sharma, 2017) (N. K. Gupta, 2020).

Respondents were managers, team leads, members of the development team, and members of

the software quality assurance team from eight software development organizations in

Tanzania.

3.9 Study Population and Sample Size

The term "population" refers to the entire set of cases from which the sample size is drawn;

thus, the sample size refers to a subset of the population (Casteel & Bridier, 2021; Campbell

et al., 2020; Yang et al., 2012). For this study, the population of practitioners applying

verification and validation practices from software development organizations was sampled; a

total of 100 respondents were selected. A sample size of 100 respondents from software

development organizations was selected because it falls within an acceptable range as per the

requirements of scientific research, whereby a sample size is not required to be below 30

respondents. According to Rusu Mocănaşu (2020), sample sizes larger than 30 and less than

500 are appropriate for most research, and in multivariate research, the sample size should be

several times (preferably 10 times or more) as large as the number of variables in the study.

35

3.10 Data Validity and Reliability Test

According to Noble and Smith (2015), reliability and validity are concepts used to evaluate

the quality of research since they indicate how well a method, technique, or test measures

something. Reliability is about the consistency of a measure, and validity is about the

accuracy of a measure (Noble & Smith, 2015). The study ensured optimum validity of the tool

used in the study by giving the initial pool of interview instruments to three academic experts

in the areas of computer science, software development, and software engineering to ensure

that the tool has both face and content validity that are sufficient for further analysis to come

up with the study's objectives. Moreover, reliability was assured by collecting only

information related to the selected software development organizations.

3.11 Research Ethics Considerations

According to Eungoo & Hwang (2021), research ethics refers to the appropriateness of

researcher behavior in light of the rights of those who become the subject of the study. The

study was considered ethical throughout the period of the study by ensuring that all

information provided by respondents remained confidential and that none of the respondents

was forced to participate in the study (Imenda, 2014). Hence, participation was voluntary.

Furthermore, during the study, no respondent was required to provide his or her name in the

questioner.Moreover, ethical standards will be adhered to by observing all background

information provided by other studies appropriately.

This study's final thesis was submitted to the Selinus University of Science and Literature

Ethical Committee Board for ethical clearance. Permission to conduct the study was sought

from the respective software development organizations in Tanzania in particular, following a

thorough explanation of the aim and benefit of the study.

36

CHAPTER FOUR

RESULTS AND ANALYSIS

4.1 Introduction

Findings and results from a research question on how software development organizations in

Tanzania perform their verification and validation activities were summarized. This research

presents a survey of the state of practice in eight Tanzanian development organizations. The

survey was conducted to improve verification and validation practices in the software

development organization. The data were collected through interviews in the software

development departments at the participating organizations and thereafter assessed and

analyzed.

In the survey, it was concluded that software development organizations invested in

documented verification and validation activities. These organizations relied more on

experienced employees than on documentation.

The development among the surveyed organizations was either incremental or Increments

were used among more process-focused organizations, while daily builds were more

frequently utilized in less process-focused organizations. Organizations can begin testing

early, during the first developed increments with limited functionality, by using incremental

development or daily builds. Thus, the cycle time for a release will be reduced since it allows

testing to run in parallel with development.

Among the surveyed organizations, no specific approach to process improvement could be

identified. The approach taken depended on the persons involved, their backgrounds, and their

experiences. Test automation and test management were regarded as areas for improvement

by several organizations. Handling the legacy parts of the product and related documentation

presented a common problem in improvement efforts for product evolution. The test

automation was carried out using scripts for products with a functional focus and recorded

data for products without a functional focus.

37

4.2 Findings and Results for the Surveyed Organizations

RQ1. How do software organizations perform verification and validation?

RQ: how does your company improve the competency level of your software verification and

validation?

Results concluded that Formal training (65.2%) and certification (55.2%) rated highly as

approaches to improving the competency of testers after on the job

Training (47.9%).

Table 4.1: Company improve the competency level of your software verification and

validation

Improving level of software verification and validation % of improving
Formal verification and validation training 65.2
Verification and validation certification 55.2
On job training 45
Attending conference of verification and validation 31.2
Other 15.2

Figure 4.1: company improve the competency level of your software verification and

validation

RQ: In your company, who is in charge of verification and validation?

38

The results from the surveyed software development organization indicated that respondents

indicated that among their organization's employees, a majority are assigning their testing to

an in-house test team (72%), and 34% of all respondents are using software developers.

Table 4.2: Personnel in charge of software verification and validation activities in

software development

S/N Software testing responsible Personel % respondents
1 In-house test team 72
2 Software Developers 34
3 Off-shore test team 17
4 Software Quality Assurance team 22

Figure 4.2: Summarize Personnel in charge of software verification and validation

activities in software development organizations in Tanzania

39

RQ: Which verification and validation methods are used? What activities do you use to find

defects before test executions?

Results from respondents from eight Tanzanian software development organizations indicated

that document analysis and requirements review are the most common activities for early

defect detection.

Table 4.3: Verification and Validation methods and activities used to find defects

before test executions

S/N Activities %Percentages
1 Formal review of the analysis documents/requirements

72

2 Formal review of the design documents

50

3 Source code inspection 30.2
4 Static analysis tools 28.2
5 None 15.2

Figure 4.3: Analysis Verification and validation methods and activities used to find

defects before test executions

RQ: What types of testing are used in organizations?

40

According to the findings, respondents from eight Tanzanian software development

organizations believe that functional testing (88%) is the most important type of testing,

followed by user acceptance testing (70.0%).

Table 4.4: The types of testing used in Tanzanian software development

organizations are listed here.

S/N Testing Types % of Respondents
1 Functional Testing 88
2 Performance Testing 62.7
3 Security Testing 45.6
4 Usability Testing 43.2
5 Accessibility Testing 29.2
6 Reliability Testing 24.4
7 Testability 23.5
8 Availability Testing 20.7

9 Maintainability Testing 20.2

10 Efficiency Testing 20.8

11 Scalability Testing 17.5

12 Interoperability Testing 16.4
13 Operability Testing 14.8
14 Portability Testing 13.1
15 Recoverability Testing 11.5
16 Supportability Testing 0.7
17 Extensibility Testing 6.2

41

Figure 4.4: In the software development organizations, identify the most important

type of testing.

RQ. What verification and validation topics are important for your company?

The results of the surveyed software development organization indicate that respondents from

eight software development organizations in Tanzania concluded that functional testing (88%)

is the most important type of testing, followed by user acceptance testing (70.0%).

Table 4.5: Details of verification and validation topics used and implemented in

software development organizations

Testing topics % Respondent organizations
User Acceptance Testing 70
Exploratory Testing 56.3
Systems Integration Testing 47.1
Web Based Aplication Testing 45.3
Mobile Testing 53
Release Management 43.8
Test Data Management 29.7
Test Environments Management 31.9
Configuration Management 25
Test Metrics and Test Effort Estimation 27.5
Static Testing 29
Testing Systems of Systems 19.1
Non-regression Testing 26.5
Cloud Testing 17.3
Business Intelligence / Big Data Testing 15.6
Embedded Systems Testing 13.2
Internet of Things Testing 10.2
Other 6.1

42

Figure 4.5: Analysis verification and validation topics used and implemented in

software development organizations

RQ: Which software development lifecycle (SDLC) model does your

organization use?

According to the findings, 81% of organizations now use agile models. Agile

and followed by the sequential methods in 50% of the respondents'

organizations.

Table 4.6: Details of Software development lifecycle (SDLC) models analysis

SN Software development lifecycle % of usage in organization
1 Agile Software Development 81
2 Sequential Development 50
3 Scrum, Kanban, Extreme Programming) 30.2
4 Waterfall, Vmodel Development 15
5 Both sequential and Agile Development 5
6 Iterative Development 19
7 None 4.2

43

Figure 4.6: Software Development Lifecycle (SDLC) Models Analysis

RQ: What are the main objectives of your verification and validation activities?

Results from respondents' surveys indicate that the most common verification and validation

activity is "to detect bugs" (98.2%), followed by "to show the software is working properly"

(77.2%).

Table 4.7: Verification and validation activities performed in organization

S/N Activities % of importance
1 To detect software bugs 98.2
2 To show the software is working properly 72
3 To gain confidence 50

4 To evaluate software requirements 48 5
5 To evaluate the verification and validation

user experience
42

6 To comply with organization regulations 34
7 To be a customer advocate 25.2
8 To have software zero defects 12.3
9 Other 2.2

44

Figure 4.7: Analyzing objectives of verification and validation activities of surveyed

organization

RQ: What are the main improvements? Areas of your verification and validation activities

The results from the surveyed organization indicated that the three most important areas for

improvement in verification and validation activities are software inspection (73.2%),

software review (62.4%), and test automation (60.4%).

Table 4.8: Provide details of the main areas of improvement for verification and

validation activities.

S/N Activities % of Improvement
1 Software inspection 73.2
2 Software review 62.4
3 Software Test automation 60.4
4 Knowledge About Test Processes 50.1
5 Communication Between Development and

Testing
43.2

6 Maintaining Test Cases 40.1
7 Communication Between Business Analysis

and Testing
55.2

8 Knowledge About Test Design Technique 34.2
9 Maintaining Software Test Scripts 37.6
10 Time management 45.2
11 Communication Between Project Management

verification and validation
51.7

12 Software Test Data Preparation 54.5

45

13 Having Well Testing Trained Personnel 31.2
14 Verification and validation Budget 52.6
15 Other

23.2

Figure 4.8: Indicates areas for improvement in software verification and validation

activities for surveyed software development organizations.

RQ: Which tools do you use it in your organization during verification and validation activities?

The results from the surveyed organizations indicated that the most commonly used tools among test

teams are software defect tracking (82.2%), software test automation (72.2%), and software test

execution (70.1%).

Table 4.9: Tools do you use it in your organization during verification and validation
activities

S/N Verification and Validation tools % of Usage verification and Validation tools
1 Software Defect Tracking Tool 82.2
2 Software Test Automation Tool

72.2

3 Software Test Execution 70.1
4 Software Test Management 69.2
5 Software Performance Testing 52.2
6 Software Requirements Traceability 45.2
7 Software Test Design 40.1
8 Software Unit testing

34.2

9 Static analysis 30.1
10 Dynamic Analysis tool 22.2
11 Software dynamic Testing 10.2
 None 3.2

46

Figure 4.9: Analyze tools organizations use during verification and validation

activities

RQ: Which test levels or types (S) receive the majority of your ICT budget?

According to the results of a survey of software development organizations, system testing (71.2%)

consumed the majority of the testing budget, followed by integration testing (50.2%), user acceptance

testing (40.3%), and unit acceptance testing (27.2%).

Table 4.10: Budgeted Test Levels in the Software Development Organization

S/N Testing Levels/Types % of ICT Budget Allocation in Organizations
1 Software System Testing 71.2
2 Software Integration Testing 50.2
3 Software User Acceptance Testing 40.3
4 Software Unit Testing

27.2

5 Other 22.6

47

Figure 4.10: Analyze Software Test Level Budget

RQ: Which new technologies will be important to the software verification and validation organization

in the following two years?

The results of the study indicated that, in the next two years, the most important subject will be

software security testing (75.2% for the software verification and validation organizations).

Figure 4.11: New technologies that will important to the software verification and
validation organization in the following two years

S/N Intended Technology % of Importance and Usage
1 Software Security Technology

75.2

2 Software Artificial Intelligence 60.2
3 Big Data 59.1
4 Systems Cloud 59.0
5 Continuous Integration 49.1
6 Continuous Testing 48.2
7 DevOps 45.2
8 Performance 44.2
9 Machine Learning 38.2
10 Database Management 37.2
11 Internet of Things 30.2
12 Usability 25.2
13 Cognitive Test Automation 31.1
14 Scalability 20.1
15 Healthcare Devices 11.2
16 Software inspection 32.5
17 Software testing tools 32.2
18 Requirement Engineering 25.2
19 Neuronal Networks 11.2
20 Other Technologies 3.2

48

Figure 4.12: Showcase Technology for Software Development Companies

RQ: What will be the most trending topic for the software verification and validation profession in the

near future?

The results of the survey indicate that software test automation is the most trending topic for the

software testing profession in the near future and is also highlighted as the main improvement area in

software verification and validation processes.

Figure 4.13: Indicate what will be the most trending topic for the software verification

and validation profession in the near future?

S/N Verification and validation Topics % of Usage and Importance
1 Software Test Automation 74.2
2 Software Agile Testing 65.2
3 Software Security Testing 53.2
4 Software Cloud Testing 52.2
5 Software Mobile Testing 49.2
6 Software Continuous Testing 40.1
7 Software Performance Testing 39.2
8 Software Virtualization 30.2
9 Software Test Process Improvement 27.2
10 Software test Data Management 20.2
11 Software Verification and Validation Techniques 19.2
12 Software Usability Testing 12.5
13 Software Test Management 11.6
14 Software Model-based Testing 10.1
15 Software Static Testing 9.2
 Others 5.2

49

Figure 4. 14: Shows what will be the most trending topic for the software verification
and validation profession in the near future.

RQ2 what are the challenges concerning the existing software verification and validation practices in

Tanzania

Table 4.11: Software verification and validation challenges

S/N Item Challenge
 1 Software Requirements Specification Finding was concluded there is Unstable

requirements
2

Verification and validation
Testing environment

More observed Defects in testing environment
and tools

3 Software Integration testing Software testing team are Limited focus on
integration testing of software components

4 Software Reviews and inspection Inadequate internal software reviews and
inspection

5 Software Unit testing More focus on white box testing than black box
testing

6 Software Independent V&V Test cases are not reviewed by independent
software engineers and software testers

7 Test management and test automation Test management and test automation are the
most challenging test activity types.

RQ: What are your most difficult verification and validation challenges in agile projects?

Results indicated that the top three testing challenges in agile projects are Agile Test Automation

(56.4%), Agile Documentation Challenge (40.7%), and Collaboration (30.2%). Considering the results

of the survey, the organization will be able to meet the software agile development challenges in light

of these challenges.

50

Table 4.12: Verification and validation challenges in agile projects

S/N Challenges in Agile Software Project % of Importance’s
 Agile Test Automation 56.4
 Agile Documentation 40.7
 Agile Collaboration 30.2
 Agile Test Effort Estimation 30
 Agile Exit and Entry Test Criteria 23.3
 Risk Awareness 17.4
 Agile Cross Functional Needs 20.4
 Software Quality Ownership 26.3
 Decision Making 15.2
 Software Traceability 20.2
 Agile Test Reporting 16.2
 Agile Legacy Defects 12.4
 Not Applicable 26.2
 Regulatory / Compliance Issues 14.3
 Other 4.2

Figure 4.15: Verification and validation challenges in agile projects

RQ: What expectations and skills do you have for the verification and validation team?

This result shows that a good software tester and verification and validation expert should have a good

understanding of the verification and validation process, including software test execution (82.1%),

software bug reporting (78.2%) and Software Test design (77.8%) are most important verification and

validation skills

51

Table 4.13: Details of verification and validation skills

S/N Verification and Validation Skills % of Importance
1 Software Test Execution

82.1

2 Software Bug Reporting s 78.2
3 Software Test Design 77.8
4 Software Test Analysis 60.2
5 Software Test Automation 57.2
6 Software Test Planning 50.2
7 Software Test Strategy 49.8
8 Software Test Implementation 40.2
9 Software Test Monitoring 39.2
10 Software Bug Advocacy 30.2
11 Others 12.1

Figure 4.16: Analyze Details of verification and validation skills

RQ: Which of the following non-software verification and validation skills are most expected

from an agile tester in your organization?

Soft skills (70.8%) and business/domain knowledge (62.9%) are non-software verification and

validation skills that are most expected from an agile tester, according to the results of the

survey.

52

Table 4.14: Details of Non-software verification and validation skills are most

expected from an agile tester

S/N Non-software verification and validation skills are
most expected from an agile tester

% Usage and Importance

1 Soft Skills

70.8

2 Business Knowledge 62.9
3 Tool Knowledge 50.1
4 Risk Estimation 49.2
5 SDLC Knowledge 48.2
6 Continuous Integration 45.2
7 Database Management 39.2
8 Software Coding 30.1
9 Software Project Management 24.2
10 Computer Network 20.2
11 Enterprise Analysis 18.2
13 Others 3.2

Figure 4.17: Non-software verification and validation skills are most expected from an

agile tester

RQ: Which verification and validation techniques are used by your verification and validation

team?

The top five verification and validation techniques selected by the survey respondents are

software inspection (82.2%), software review (79.2%), and software design review Review

(75.2%), software code review (70.2%), and software use case testing (69.2%).

53

Table 4.15: Verification and validation techniques are used verification and validation
team

S/N Verification and validation techniques are used by
verification and validation team

% Usage
/Importance

1 Software inspection 82.2
2 Software Review 79.2
3 Software Design Review 75.2
4 Software code review 70.2
5 Software Use Case Testing 69.2
6 Software Exploratory Testing 59.4
7 Software Boundary Value Analysis 55.2
8 Software Checklist Based 54.2
9 Software Equivalence Partitioning 50.2
10 Software Decision Tables 49.2
11 Software Statement Coverage 43.2
12 Other 12.3

Figure 4.18: Verification and validation techniques are used by verification and
validation team

4.2 Experiments Results

4.2.1 In defect analysis, how do review and inspections compare to testing?

The combination of different verification and validation activities is a means for achieving a

high-quality software product that is developed with low fault injection and exposed to

effective fault detection techniques.

54

The focus of this research question is on the combination of reviews, inspections, and testing

as fault detection activities. In the controlled experiment, the techniques were evaluated in

terms of their fault detection capabilities. Related work combining the methods has focused

on fault detection on code artifacts, while the work in this thesis emphasizes the importance of

also investigating and comparing the activities on a higher abstraction level.

In the study on improving software review, inspection, and testing, the efficiency and

effectiveness of the techniques for the detection of design faults were evaluated. The general

results from this study show that the values for efficiency and effectiveness are higher for the

review and inspection technique and that the testing technique tends to require more time for

learning. Despite the fact that rework was not considered, the study included defect analysis,

reviews, and inspections, which were more efficient and effective.

4.2.2 Comparison Between The Software Design Review and Software Code Review

Techniques

Experiment's research compares software design review and software code review as

verification and validation techniques for software process improvement. And for improving

the quality of the software products, results show that both were used in the early stages of

software system development. Software design review is used to review all the requirements

and design and improve them with the intent of obtaining higher-quality software products

and developing the software system within a short time. Some of the surveyed organizations

used software code review to investigate if software code was written without error by

considering the designs that had been made before. The conclusion of the research indicates

that software design review and software code review are mutually exclusive. When the

design is done correctly, it is easy to map the design into coding. We noticed that the better

the software design, the better the code produced. According to the findings obtained from

surveyed software development organizations in Tanzania, software products are of higher

quality. In the early stages of software development, the progress of the software can also be

seen.

4.2.3 Comparison Between Software Code Review, Software Design Review, and

Software Testing Techniques

To boost confidence in the software program, we discovered that software code review and

software design review techniques could prevent the introduction of bugs or defects from the

55

start of the software development process rather than waiting until the end. Both are applied

with the intent of detecting and removing a large number of bugs or defects in the early

phases of the software development product.

As a result, in order to reduce the time spent on software testing, it is recommended that

serious measures be taken to improve the verification and validation techniques used during

the early stages of software development. It was noticed that the number of defects discovered

during software testing is dependent on the fact that software design review and software code

review have been done correctly, so there is a chance of avoiding software testing. But if the

verification and validation processes are not applied correctly at the early phases of the

software development processes, there is the possibility of detecting a larger number of bugs

in the software.

4.2.4 Comparison between Software Inspection and Software Testing Techniques

Software inspection is applicable as a software review technique. During the experiment, I

noticed that, using software inspection methods, all the documents were reviewed to check for

defects and removed. For the purposes of the experiment, software inspection techniques

involved all the activities of the software process and all the stakeholders of the specified

software system.

Tracking the progress of the project status is simple once software inspection for verification

and validation is applied. Furthermore, it was concluded that it is easy to avoid a large number

of defects during the early stages of software development. Software testing techniques

depend on the quality of the software inspection. The general conclusion is that the better the

software inspection, the better the software testing.

When all software documents are reviewed at the beginning of the software development

process, a large number of defects are avoided. Doing the software testing is not enough to

establish confidence in using the software system, but doing the software testing is necessary

to show the presence of bugs that are involved in that system.

In order to avoid spending a significant amount of time finding and fixing a large number of

bugs during software testing, it is advised in this research paper that the use of software

inspection techniques must be taken seriously in the early phases of the software development

56

process. in order to show the presence of bugs without knowing how to prevent them. But

both software testing and software inspection are used as verification and validation

techniques to help software developing organizations detect, prevent, and avoid the bugs or

defects of the software.

4.2.5 Summary of Experiment Results

i. The results of the experiment show that many more software defects were introduced

during coding than design defects.

ii. The experiment's findings revealed that many defects were removed during testing,

compilation, and code review, but few defects were removed during design review.

iii. The results show that defects were introduced and removed at each stage. And the

number of observations for each finding and result presented in this thesis has been

specified.

Figure 4.19: Software defects analysis

Figure 4.20: The experiment results show that more software defects were introduced
during coding than design defects.

57

Figure 4.21: The experiment's findings revealed that many defects were removed
during testing, compilation, and code review, but few defects were
removed during design review.

4.3 Findings of the Literature Review

The main literature sources are research databases with connected search engines used to

collect secondary data for the research presented in this thesis. A literature study aims to map

out the current publications relevant to software verification and validation practices with the

help of keywords and prior knowledge.

Findings from the literature review indicate that the use of automation in testing has

increased. Automation has become more popular at all levels of testing in recent years (Feldt

et al., 2010). (Jan et al., 2016). Second, the use of formal software process models and

58

capability maturity models appears to have decreased, while testing tools have increased in

use and effectiveness (M. Al Atitaie et al., 2020). It was discovered that there are more

developers than testers. Many software development companies lack a dedicated testing team.

This finding could point to a lack of maturity or financial resources to support a dedicated

testing team. software development organization Low utilization of software verification and

validation techniques and tools, challenges caused by a lack of software testing methods and

tools, limited use of testing tools Software testing is still a comparatively small part of

software development in Tanzania, even though it occasionally occurs concurrently with

development activities. It was discovered that the majority of procedures and methods haven't

changed all that much in 20 years. In addition to using the right procedures, effective testing

calls for a tester's creativity and experience. Testing entails more than just fixing bugs. Testing

serves other purposes besides identifying and fixing flaws. Unit testing methodologies and

practices appear to be unaffected by test management or quality management. Although unit

tests are structural, or "white box," in nature, developers rarely assess their completion in

terms of structural coverage. The use of formal software process models and capability

maturity models appears to have decreased. Functional testing is the most important type of

testing in organizations. The use of automation in testing has increased. Automation has

become more popular at all levels of testing in recent years. Second, the use of formal

software process models and capability maturity models appears to have decreased. Testing is

costly. Saving money and time can be accomplished through automation. Agile

methodologies are becoming increasingly popular, emphasizing the necessity for suitable

testing processes and techniques. The development of software quality is an information-

intensive process that is influenced by organizational structures and information flow within

firms.

4.4 Threats to Validity

The key validity threats to these conclusions are related to each research question.

General threats to the external validity of a survey concern whether the sample of the study

represents an appropriate population (Yadav & Sharma, 2017; Vaismoradi & Snelgrove,

2019). The sample chosen has diversity in several aspects, though it is still a result of

convenience sampling due to the organizations' geographical location in Tanzania (Zach,

2006). Threats to internal validity might also affect the outcome of the survey. One threat

59

concerns the respondents. They may have different views of reality depending on their role in

the surveyed organizations. In the reported survey, most organizations had more than one

respondent. The respondents ranged from test managers, developers, testers, and quality

assurance team members to project managers (Casteel & Bridier, 2021). As a qualitative

study, there is potential for bias from the researchers as well as the respondents (Islamia,

2017). This threat was countered by triangulation: having multiple sources for the data, peer

debriefing, and member checking (having the material received from the respondents returned

to them for review).

General threats in experimental studies, like the experiment that evaluates defect analysis,

often concern external validity, or whether the results are generalizable to other settings.

These might be reduced by choosing an appropriate design and considering the experimental

environment and its subjects and objects. This study discovered a significant threat to

construct validity (Brink, 2018).

60

CHAPTER FIVE

DISCUSSION

5.1 Discussion of Findings

Through data analysis, Research presented in this thesis concluded that using verification and

validation techniques early in the software development process has a significant impact on

improving software development procedures. Greater software product quality can be easily

attained in the early stages of software development. The findings of this study also show that

when verification and validation techniques are used early in the software development

process, it is easy to track the progress of software projects as quickly as possible. Apart from

that, this study finds that software testing is also one of the methodologies for software

verification and validation. It is easy to track the progress of software projects as quickly as

possible through the use of software inspection. Software testing is prevalent for software

verification and validation. Software testing is insufficient to establish user confidence in the

software system because it focuses on detecting problems. This is not a vital aspect of

enhancing the software process. Software reviews, software code reviews, formal

specifications, and software design reviews have a significant impact on assisting software

development organizations in obtaining higher-quality software. Many errors discovered

during the development phase of software development are particularly costly to fix when

compared to those discovered during the early stages of software development. According to

the results of the literature review, software testing is also one of the methodologies for

software verification and validation. However, doing software testing is insufficient to

establish user confidence in the software system because software testing focuses on detecting

problems, which is not a vital aspect of enhancing the software process.

Respondents from eight software development organizations in Tanzania concluded that

functional testing (88%) is the most important type of testing, followed by user acceptance

testing (70. 0%).Formal training (65.2%) and certification (55.2%) rated highly as approaches

to improving the competency of testers after on-the-job training (47.9%). Respondents from

eight Tanzanian software development organizations indicated that document analysis and

requirements review are the most common activities for early defect detection. Results

indicated that respondents indicated that among their organizations, a majority are assigning

their testing to an in-house test team (72%), and 34% of all respondents are using software

developers. The results of the survey indicate that software test automation is the most

61

trending topic for the software testing profession in the near future and is also highlighted as

the main improvement area in software verification and validation processes. According to the

findings, 81% of organizations now use agile models. Agile and followed by the sequential

methods in 50% of the respondents' organizations. Results from respondents' surveys indicate

that the most common verification and validation activity is "to detect bugs" (98.2%),

followed by "to show the software is working properly" (77.2%). The results of the survey

indicate that software test automation is the most trending topic for the software testing

profession in the near future and is also highlighted as the main improvement area in software

verification and validation processes. The results of the study indicated that, in the next two

years, the most important subject will be software security testing (75.2% for the software

verification and validation organizations). According to the results of a survey of software

development organizations, system testing (71.2%) consumed the majority of the testing

budget, followed by integration testing (50.2%), user acceptance testing (40.3%), and unit

acceptance testing (27.2%). The results from the surveyed organizations indicated that the

most commonly used tools among test teams are software defect tracking (82.2%), software

test automation (72.2%), and software test execution (70.1%). Results indicated that the top

three testing challenges in Agile projects are Agile Test Automation (56.4%), Agile

Documentation Challenge (40.7%), and Collaboration (30.2%). Considering the results of the

survey, the organization will be able to meet the software agile development challenges in

light of these challenges. The results from the surveyed organization indicated that the three

most important areas for improvement in verification and validation activities are software

inspection (73.2%), software review (62.4%), and test automation (60.4%). According to the

findings, Tanzanian software development organizations face verification and validation

challenges. Most Tanzanian software development organizations have unstable requirements

for software specification documents. During verification and validation testing, more defects

were discovered in the testing environment and tools than I had anticipated. The software

testing team has a limited focus on integration testing of software components. According to

the findings, most software development organizations in Tanzania have insufficient internal

software review and inspection. We came to the conclusion that many software organizations

in Tanzania prioritize white-box testing over black-box testing. We observed that test cases

are not reviewed by independent software engineers and software testers. Results show that

practitioners consider test management, test automation, and other test activities to be the

62

most challenging test activity types. Other test activity types, such as test case design, test

execution, evaluation, and result reporting, have been seen as less challenging. Regarding test

management, some of the main challenges raised by practitioners are related to assessing the

effectiveness and efficiency of testing. Practitioners need guidance for the selection of

suitable testing approaches for a given context. Tanzanian software development

organizations reuse document templates for ICT software development projects but struggle

to reuse source code. The software development organization in Tanzania allows for

reusability, but other requirements in the standards make reusability difficult to achieve. The

main issue with Tanzanian software development organizations is that they have a high

demand for detailed documentation but do not perform software quality assurance or

verification and validation tasks. The top five verification and validation techniques selected

by the survey respondents are software inspection (82.2%), software review (79.2%), software

design review (75.2%), software code review (70.2%), and software use case testing (69.2%).

Soft skills (70.8%) and business/domain knowledge (62.9%) are the non-software verification

and validation skills that are most expected from an agile tester, according to the results of the

survey. This result shows that a good software tester and verification and validation expert

should have a good understanding of the verification and validation process, including

software test execution (82.1%), software bug reporting (78.2%), and software test design

(77.8%), which are the most important verification and validation skills.

This research presented in the thesis is not based on full implementation but on

experimentation based on experiment of the software verification and validation activities

used to support the results presented. Conclusions have been drawn from the results obtained.

We conducted experiments with participants from eight software development organizations

and analyzed software defects, where each process was checked and some verification and

validation activities were performed, and we compared results due to their applicability and

efficiency in assisting the use of software verification and validation techniques in order to

produce higher-quality software products in a short time. After verification and validation

activities were performed. The experimentation in this thesis is based on the development of

various software programs with the goal of improving the quality of each program. The

results of experiment concluded that that defects were introduced and removed at each stage.

And the number of observations for each finding and result presented in this thesis has been

specified.

63

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Software development organizations can produce higher-quality software only if the number

of defects introduced through each phase of the software development process is prevented as

soon as possible during each phase of the process.

Verification and validation activities must begin in the early stages of the software

development process. Instead of applying software testing at the end of the software

development process, this will help prevent a greater number of defects in a shorter period of

time. Once the verification and validation process is applied as soon as the software

development starts, it will reduce the amount of time spent during the software testing phase,

and sometimes it is not easy to detect and avoid all defects or bugs using software testing.

In order to establish confidence in using the software system and to make users trust software

products, it is important to check if the system developed will meet the needs of the user and

the requirements specified (Raulamo-Jurvanen et al., 2019). Doing that will avoid the

consequence of the software project failing to perform an operation as required (Ullah Khan et

al., 2015).

Employing verification and validation techniques early on will greatly assist software

organizations in meeting their objectives and improving the software process.

It is not possible to produce higher-quality software system products without the support of

verification and validation techniques. This means that verification and validation techniques

are focused on defect detection, preventing, and avoiding defects within the software system.

Software testing is applied by many software organizations, but it is not enough to prove that

the software system contains no defects. Because the purpose of software testing is to show

the presence of bugs, the research presented in this thesis suggests that, in order to avoid a

greater number of bugs in software products, verification and validation processes should be

implemented as soon as possible.

64

Research presented in this thesis explains the current application of verification and validation

techniques to software process improvement. Considering this situation, we have discussed

the different existing validation and verification techniques from different literature sources

and have been using the comparison approach for some existing verification and validation

techniques like software inspection, software code review, software testing, and software

design review. We conducted experiments to derive the findings of this study, which was

done as a project study using the person-software process approach, and from the results

presented in the form of graphs, a lot of information can be analyzed from the graphs of the

results obtained.

The major conclusion is that there is a need to use verification and validation techniques in

order to improve the software process and obtain quality software products. In this research

paper, we propose using verification and validation to avoid software project failure and to

assist software development organizations in managing and tracking the progress of the

software products that they must develop. And as well, the early determination of the software

project's failure or success can be visualized as soon as the software development starts.

6.2 Study Recommendations

This thesis recommends employing software verification and validation at the early stage of

software development so that higher-quality software can be delivered to the customer within

a short time. The domain of this thesis, presented in this paper, is helping software

engineering organizations improve the software verification and validation process and

produce quality software. Through the use of the software verification and validation

processes. Software development organizations improve the software verification and

validation process and produce quality software. Through the use of the software verification

and validation processes. We can improve the software process, make sure that higher-quality

software products are delivered to the customer within a reasonable amount of time, and focus

on the market's demands. The end user must also trust the software system that they are going

to use. The early involvement of customers in the software development process gives them

confidence in the system they are going to use, and it is easy to trust the system delivered by

the developers.

65

6.2.1 Future Work

In the future, based on the research presented in this thesis, we are going to focus on the

verification and validation techniques that will help the software process improve when the

functionality of the software system changes (Bjarnason et al., 2014). A survey was conducted

in eight Tanzanian software development organizations to investigate the current state of

verification and validation practices, identify the existing challenges of software verification

and validation activities in software development organizations, and conduct a case study on

software application development and testing. It was observed that it is important for the

verification and validation processes to be flexible due to changes in the software

requirements during software development.

In the future, this research study will address the adaptability of verification and validation in

order to limit the failure of the software operation when any changes to the software

requirements occur. It is true that many software verification and validation processes are

applied in software processes, but some are not flexible (Bäckström, 2022). Therefore, future

research will focus on how the verification and validation processes will be able to adapt to

changes in software functionality or requirements (Carlos & Ibrahim, 2021).

Furthermore, future research presented in this thesis will focus on how the addition of some

processes will help the existing verification and validation techniques be flexible and

adjustable when the functionality of the software changes during development. This

adaptation of the use of verification and validation activities to the software improvement that

this research will go on to address in the future will depend on the functionality of the system

and what the software product is required to be. Also, this will focus on the general risks that

can occur during the use of software verification and validation techniques during software

development (Okezie et al., 2019).

66

APPENDEX

Study questioners and interview questions were developed.

RQ. How do software organizations perform verification and validation?

RQ how does your company improve the competency level of your software verification and

validation?

Formal verification and validation training ()

Verification and validation certification

On job training

Attending conference of verification and validation

Other

RQ: In your company, who is in charge of verification and validation?

Software testing responsible Personnel

In-house test team

Software Developers ()

Off-shore test team

Software Quality Assurance team

RQ: Which verification and validation methods are used? What activities do you use to find

defects before test executions?

Formal review of the analysis documents/requirements

Formal review of the design documents ()

Source code inspection

Static analysis tools

None

RQ: What types of testing are used in organizations?

Functional Testing

Performance Testing

Security Testing ()

Usability Testing

Accessibility Testing

67

Reliability Testing.

Testability Testing

Availability Testing

Maintainability Testing

Efficiency Testing

Scalability Testing

Interoperability Testing

Operability Testing

Portability Testing

Recoverability Testing

Supportability Testing

Extensibility Testing

RQ What verification and validation topics are important for your company?

User Acceptance Testing

Exploratory Testing

Systems Integration Testing

Web Based Application Testing

Mobile Testing.

Release Management ()

Test Data Management

Test Environments Management

Configuration Management

Test Metrics and Test Effort Estimation

Static Testing

Testing Systems of Systems

Non-regression Testing

Cloud Testing

Business Intelligence / Big Data Testing

Embedded Systems Testing

Internet of Things Testing

Other

68

RQ which software development lifecycle (SDLC) model does your organization use?

Agile Software Development.

Sequential Development

Scrum, Kanban, Extreme Programming) ()

Waterfall, Vmodel Development

Both sequential and Agile Development

Iterative Development

None

RQ: What are the main objectives of your verification and validation activities?

To detect software bugs

To show the software is working properly

To gain confidence

To evaluate software requirements ()

To evaluate the verification and validation user experience

To comply with organization regulations

To be a customer advocate

To have software zero defects

Other

RQ: What are the main improvements? Areas of your verification and validation activities

Software inspection

Software review

Software Test automation

Knowledge About Test Processes ()

Communication Between Development and Testing

Maintaining Test Cases

Communication Between Business Analysis and Testing

Knowledge About Test Design Technique

Maintaining Software Test Scripts

Time management

69

Communication Between Project Management verification and validation

Software Test Data Preparation

Having Well Testing Trained Personnel ()

Verification and validation Budget

Other

RQ: Which tools do you use it in your organization during verification and validation

activities?

Software Defect Tracking Tool

Software Test Automation Tool ()

Software Test Execution.

Software Test Management

Software Performance Testing

Software Requirements Traceability

Software Test Design

Software Unit testing

Static analysis

Dynamic Analysis tool

Software dynamic Testing

None

RQ: Which test levels or types (S) receive the majority of your ICT budget?

Software System Testing

Software Integration Testing ()

Software User Acceptance Testing

Software Unit Testing

Other

RQ: Which new technologies will be important to the software verification and validation

organization in the following two years?

Software Security Technology ()

Software Artificial Intelligence

70

Big Data

Systems Cloud

Continuous Integration

Continuous Testing

DevOps

Performance

Machine Learning ()

Database Management

Internet of Things

Usability

Cognitive Test Automation

Scalability

Healthcare Devices

Software inspection

Software testing tools

Requirement Engineering

Neuronal Networks

Other Technologies

RQ: What will be the most trending topic for the software verification and validation

profession in the near future?

Software Test Automation

Software Agile Testing

Software Security Testing ()

Software Cloud Testing

Software Mobile Testing

Software Continuous Testing

Software Performance Testing

Software Virtualization

Software Test Process Improvement

Software test Data Management

Software Verification and Validation Techniques

71

Software Usability Testing

Software Test Management

Software Model-based Testing

Software Static Testing.

Others

RQ what are the challenges concerning the existing software verification and validation

practices in Tanzania

RQ: What are your most difficult verification and validation challenges in agile projects?

Agile Test Automation

Agile Documentation

Agile Collaboration ()

Agile Test Effort Estimation

Agile Exit and Entry Test Criteria

Risk Awareness.

Agile Cross Functional Needs

Software Quality Ownership

Decision Making

Software Traceability

Agile Test Reporting

Agile Legacy Defects

Not Applicable

Regulatory / Compliance Issues

Other

RQ: What expectations and skills do you have for the verification and validation team?

Software Test Execution

Software Bug Reporting’s

Software Test Design

Software Test Analysis ()

Software Test Automation

Software Test Planning

72

Software Test Strategy

Software Test Implementation

Software Test Monitoring

Software Bug Advocacy

Others

RQ: Which of the following non-software verification and validation skills are most expected

from an agile tester in your organization?

Soft Skills

Business Knowledge

Tool Knowledge

Risk Estimation

SDLC Knowledge ()

Continuous Integration

Database Management

Software Coding

Software Project Management.

Computer Network

Enterprise Analysis

Others

RQ: Which verification and validation techniques are used by your verification and validation

team?

Software inspection

Software Review

Software Design Review

Software code review. ()

Software Use Case Testing.

Software Exploratory Testing

Software Boundary Value Analysis

Software Checklist Based.

73

Software Equivalence Partitioning

Software Decision Tables

Software Statement Coverage.

Other

RQ How do you compare the software design review and software code review techniques?

for Defect injection and removal during program development

RQ How do you compare software code review, software design review, and software testing

techniques in terms of defects injected and removed?

RQ How do you compare software inspection and software testing techniques in terms of

software quality?

