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ABSTRACT 

This study investigates the spatiotemporal environmental impacts of alluvial gold mining in the 

Betaré-Oya, East Region of Cameroon from 2021 to 2025 using a mixed-methods approach 

combining remote sensing analysis, field observations, and community interviews. Sentinel-2 

satellite imagery was analyzed to assess land degradation (Bare Soil Index), vegetation health 

(Normalized Difference Vegetation Index), water quality (Normalized Difference Water Index, 

Turbidity Index, Suspended Sediment Concentration), and land use/land cover (LULC) 

changes. Field observations (January to March, 2025) and Google Earth Pro imagery confirmed 

extensive deforestation, soil erosion, and water pollution in mining-affected areas. The BSI 

analysis revealed a significant increase in bare soil from 19.20% in 2021 to 38.23% in 2024. 

NDMI analysis showed a slight increase in moisture-deficient areas (bare soil) from 16.54% 

(2021) to 16.56% (2023) while greatly increases from16.56% in 2023 to 24.68% in 2024. LULC 

classification indicated a decrease in dense vegetation and an increase in bare land and mine 

site areas. The study proposes a comprehensive rehabilitation strategy based on these findings, 

including soil stabilization, reforestation, water treatment, mine pit rehabilitation, community 

engagement, and long-term monitoring. Policy recommendations include stricter regulations, 

promotion of sustainable mining practices, and the establishment of a dedicated fund for mine 

closure and rehabilitation. Future research should focus on long-term monitoring of 

rehabilitation efforts, assessment of different rehabilitation techniques, and investigation of 

socioeconomic impacts. The findings highlight the urgent need for comprehensive and 

sustainable approaches to manage the environmental impacts of alluvial gold mining and ensure 

the long-term well-being of local communities and ecosystems in the Betaré-Oya region. 

Keywords: Spatiotemporal analysis, Environmental impact, Rehabilitation, Alluvial gold 

mining, Betare-Oya,   
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CHAPTER 1 

INTRODUCTION 

1.1 Background of study 

Mining has been a significant economic activity worldwide, contributing to industrial 

development, employment, and revenue generation (Hilson & Murck, 2000). However, its 

environmental and socio-economic impacts have raised major concerns, particularly in 

developing countries where regulation is weak (Weng et al., 2013). Among various forms of 

mining, alluvial gold mining is one of the most prevalent in tropical regions, especially in 

Africa, where semi-mechanized and artisanal small-scale miners extract gold from riverbeds 

and floodplains (D’Souza, 2020). 

Betaré-Oya, located in the East Region of Cameroon, has emerged as a hotspot for alluvial gold 

mining due to its rich gold deposits (Ndjama et al., 2019). The mining industry in this region is 

largely dominated by semi-mechanized and artisanal small-scale mining (ASM), which 

provides livelihoods for thousands of people but also leads to severe environmental degradation, 

including deforestation, soil erosion, biodiversity loss, and water pollution (Tetsopgang et al., 

2021). The lack of proper rehabilitation strategies has left abandoned mining sites exposed to 

further degradation, affecting both the ecosystem and local communities (Kouamé et al., 2022). 

The environmental impact of alluvial gold mining in Betaré-Oya is significant, particularly on 

land degradation, water pollution, and biodiversity loss. Studies have shown that excessive 

excavation of riverbanks leads to increased sedimentation, changes in river flow, and 

destruction of aquatic habitats (Lindahl, 2014). Additionally, the use of mercury and cyanide in 

alluvial gold concentration contaminates water sources, posing health risks to local populations 

(Esdaile & Chalker, 2018). 

The introduction of remote sensing technology has transformed the monitoring and assessment 

of environmental changes caused by mining (Zhao & Han, 2018; Adamu & Lawal, 2019). It 

offers timely and accurate data, enabling the analysis of spatial and temporal patterns of land 

degradation, which is essential for developing effective rehabilitation strategies. Studies have 

demonstrated the effectiveness of satellite imagery in detecting land use and land cover (LULC) 

changes in mining areas (Zhou et al., 2017), providing critical insights for stakeholders to 

implement informed management practices. In addition Multispectral and thermal imaging for 

spatiotemporal analysis of mining impacts have widely been used in monitoring vegetation 
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health, and water quality over time, providing critical insights for rehabilitation planning (Jain 

et al., 2021). 

Despite the evident environmental degradation, mine closure and rehabilitation remain a major 

challenge in many developing regions, including Betaré-Oya (UNEP, 2020; Barlas & 

Funtowicz, 2021). Effective reclamation and restoration strategies involve reforestation, soil 

remediation, and sustainable land-use planning (Miller et al., 2019; Smith & Watson, 2017). 

The use of remote sensing technologies, particularly Sentinel-2 and Landsat data, enables 

researchers to track vegetation recovery, soil erosion, and water contamination post-mining 

(Gessner et al., 2015; Vega & García-Ruiz, 2019). 

Several studies have utilized remote sensing to map LULC changes resulting from alluvial gold 

mining activities in Betaré-Oya. For example, research employing Landsat imagery from 1987 

to 2017 revealed significant environmental transformations, such as increased human 

settlements and expanded artisanal mining at the expense of vegetation cover (Kamga et al., 

2017). Another study using Sentinel-2 imagery from 2018 to 2022 by Azinwi et al. (2024) 

highlighted the expansion of mining activities and their impact on local ecosystems. These 

findings underscore the critical need for continuous monitoring and the development of 

rehabilitation measures to mitigate environmental degradation. 

Water quality assessments in Betaré-Oya have also indicated the adverse effects of mining 

activities (Babut et al., 2019). Analyses of surface water have shown increased turbidity and 

elevated concentrations of heavy metals, including mercury, which pose risks to aquatic life 

and human health (Chica & Walker, 2020). Additionally, studies have reported mercury 

contamination in sediments and fish, raising concerns about bioaccumulation and the potential 

health implications for local communities (Diop & Kamara, 2018). 

Despite these insights, there remains a gap in research that integrates spatiotemporal analysis 

with rehabilitation efforts in the Betaré-Oya region. Existing studies have primarily focused on 

mapping changes without exploring the temporal dynamics of degradation or proposing 

concrete rehabilitation strategies. Addressing this gap is essential for developing comprehensive 

approaches to environmental management and restoration in mining-affected areas. Given these 

concerns, this study aims to conduct a spatiotemporal analysis of the land degradation, water 

quality, land use changes, and vegetation health in Betaré-Oya’s mining-affected areas from 

2021 to 2025. The research will integrate multispectral and thermal remote sensing techniques 

to assess environmental changes and propose strategies for effective mine rehabilitation. 
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1.2 Statement of the Problem 

Alluvial gold mining has become a major economic activity in Betaré-Oya, East Cameroon, 

attracting both artisanal small-scale miners (ASM) and large mining companies. While this 

sector provides employment and contributes to the local economy, it also results in severe 

environmental degradation, including land degradation, deforestation, water pollution, and 

biodiversity loss. The uncontrolled expansion of mining activities, coupled with poor regulatory 

enforcement, has led to the abandonment of numerous mined-out sites without proper 

rehabilitation. 

One of the most pressing environmental issues in Betaré-Oya is water pollution, as mining 

operations involve the direct discharge of sediments, heavy metals, and chemicals into rivers 

and streams. The use of mercury in gold extraction further exacerbates contamination, posing 

serious health risks to both miners and local communities who depend on these water sources 

for drinking, fishing, and agriculture. 

Additionally, the region experiences rapid land cover changes, with vast areas of forest and 

farmland being converted into barren mining landscapes. Vegetation loss disrupts local 

ecosystems, reduces soil fertility, and increases erosion and flooding risks. Despite the clear 

evidence of environmental damage, rehabilitation efforts remain inadequate, and no 

comprehensive spatiotemporal analysis has been conducted to track environmental degradation 

and propose effective rehabilitation strategies. The lack of reliable environmental monitoring 

tools further hinders sustainable mining practices in the region. Traditional field-based 

assessments are costly, time-consuming, and geographically limited, making it difficult to 

obtain accurate and timely information on the environmental impacts of mining activities. 

1.3 Research Objective 

1.3.1 Main Research Objective 

The main objective of this study is to conduct a spatiotemporal analysis of alluvial gold mining-

affected areas in Betaré-Oya, Cameroon from 2021 to 2025 using multispectral and thermal 

remote sensing to assess land degradation, water quality, land use/land cover (LULC) changes, 

and vegetation health, while proposing a strategy for effective mine closure and rehabilitation. 

1.3.2 Specific Research Objectives 

1. Assess land degradation in alluvial gold mining-affected areas of Betaré-Oya from field-

based assessment and satellite imagery analysis. 
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2. Examine vegetation health trends in the study area using multispectral and thermal remote 

sensing index (NDVI). 

3. Analyze water quality changes in mining-impacted rivers and streams by integrating 

spectral indices and remote sensing data. 

4. Monitor land use/land cover (LULC) changes for evaluating rehabilitation efforts 

implemented over time. 

5. Propose effective mine closure and rehabilitation strategies based on the findings. 

1.4 Research Questions 

1.4.1 Main Research Question 

How has alluvial gold mining affected land degradation, water quality, land use/land cover 

(LULC), and vegetation health in Betaré-Oya, Cameroon, from 2021 to 2025, and what 

strategies can be proposed for mine closure and rehabilitation? 

1.4.2 Specific Research Questions 

1. What is the extent of land degradation caused by alluvial gold mining in Betaré-Oya over 

the study period? 

2. What are the trends in vegetation health, and how does mining impact ecosystem recovery? 

3. How has water quality changed in mining-impacted rivers and streams, and what pollutants 

are present? 

4. What are the spatiotemporal land use/land cover changes, and have there been any efforts 

of ongoing rehabilitation measures? 

5. What mine closure and rehabilitation strategies can be implemented to restore degraded 

mining areas? 

1.5 Significance of the Study 

This research is significant in several ways, contributing to both scientific knowledge and 

policy-making for sustainable mining practices in Betaré-Oya, Cameroon. 

1.5.1 Contribution to Environmental Monitoring and Remote Sensing Applications 

The study employs multispectral and thermal remote sensing for spatiotemporal analysis, 

providing a scientific basis for monitoring environmental changes in mining-affected areas. By 

integrating Sentinel satellite data with GIS-based analysis, this research enhances existing 

methods for detecting land degradation, water pollution, and vegetation loss (Gimeno & Pérez, 

2020). 
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1.5.2 Policy Implications for Sustainable Mining 

The findings will offer data-driven insights to policymakers, regulatory agencies, and 

environmental managers to design and enforce sustainable mining policies. Identifying critical 

environmental risks will enable authorities to develop rehabilitation guidelines and enforce 

responsible mining practices. 

1.5.3 Contribution to Mine Closure and Rehabilitation Strategies 

By analyzing the effectiveness of past and present mine closure strategies, this study will 

propose evidence-based rehabilitation techniques for abandoned mining sites. This is essential 

for restoring soil fertility, vegetation cover, and water quality to pre-mining conditions. 

1.5.4 Socioeconomic and Community Benefits 

Mining communities in Betaré-Oya face serious environmental and health risks due to exposure 

to mercury, sedimentation, and deforestation (Esdaile & Chalker, 2018; Babut et al., 2019). By 

assessing water quality and land degradation trends, this study will provide critical information 

to local governments, NGOs, and community leaders on the need for environmental restoration 

efforts and alternative sustainable livelihoods for affected populations. 

1.6 Scope and Limitations of the Study 

1.6.1 Scope of the Study 

This study focuses on spatiotemporal analysis of alluvial gold mining-affected areas in Betaré-

Oya, Cameroon, from 2021 to 2025 using multispectral and thermal remote sensing data. The 

research assesses land degradation, water quality, land use/land cover (LULC) changes, and 

vegetation health while proposing strategies for mine closure and rehabilitation. 

 Geographical Scope: The study area is Betaré-Oya, located in the East Region of 

Cameroon, a significant hub for semi-mechanized and artisanal small-scale gold mining 

(ASGM). 

 Temporal Scope: The analysis covers a five-year period (2021–2025) to detect 

environmental trends and impacts. 

 Thematic Scope: The research integrates remote sensing data (Sentinel multispectral 

and thermal imagery) and GIS tools (SNAP, ArcGIS, Google Earth Pro and Google 

earth engine) to analyze environmental changes and propose sustainable rehabilitation 

strategies. 

1.6.2 Limitations of the Study 

Despite its broad analytical scope, the study has some limitations: 
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 Cloud Cover Issues: The presence of persistent cloud cover in Betaré-Oya may 

obstruct satellite image acquisition, particularly for optical remote sensing. 

 Data Availability Constraints: The study relies on publicly available Sentinel data, 

which may have spatial and temporal resolution limitations. 

 Field Validation Challenges: While remote sensing techniques are effective, ground 

truthing (field data collection) is necessary to validate findings, which may be 

constrained by accessibility to all the mining-affected areas, and logistical challenges. 

 Uncertainty in Water Quality Assessment: The use of remote sensing indices for 

water quality assessment may require supplementary in-situ water sampling for 

enhanced accuracy. 

1.7 Study Area Description 

Betaré-Oya is a key alluvial gold mining area located in the East Region of Cameroon. The area 

has been a major alluvial gold mining district for decades, contributing to land degradation, 

deforestation, and water pollution.  

 

Figure 1.1: Location Map of study area 
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1.7.1 Geographical Location 

Betaré-Oya is situated at approximately latitude 14°1'0.643"E   and longitude 5°42'48.587"N 

(figure 1.1) in the Lom-et-Djerem Division of Cameroon’s East Region. It is bordered by 

Ngoura, Belabo, and Garoua-Boulaï and lies along the Lom River, a major water source that is 

heavily impacted by gold mining activities (Ndjigui et al., 2021). 

1.7.2 Ethnic Groups and Population 

The population of Betaré-Oya is diverse, with the Gbaya, Beti, and Baka ethnic groups being 

predominant. The Gbaya people, who are primarily agriculturalists and traders, form the largest 

community. The region also hosts migrant workers from other parts of Cameroon and 

neighboring countries who engage in artisanal mining (Tchindjang et al., 2018). 

1.7.3 Climate and Rainfall Patterns 

Betaré-Oya experiences a tropical humid climate with two major seasons: 

Rainy Season: Extends from March to October, with peak rainfall occurring in July and 

September. Annual precipitation ranges between 1,500–2,000 mm (Yemefack et al., 2019). 

Dry Season: Runs from November to February, characterized by hot temperatures (28°C–35°C) 

and reduced river flow, which influences mining activities. 

1.7.4 Vegetation and Land Cover 

The natural vegetation of Betaré-Oya consists of dense semi-deciduous forests, but extensive 

deforestation has occurred due to gold mining, agriculture, and logging (Sonwa et al., 2020). 

The main vegetation types include: Gallery forests along rivers and wetlands; Savannah 

woodlands in degraded mining zones; Farmland and secondary forests due to shifting 

cultivation 

1.7.5 Socioeconomic Activities 

The economy of Betaré-Oya is driven by artisanal gold mining, which employs thousands of 

miners. Other key activities include: 

 Subsistence agriculture: Crops such as cassava, maize, and groundnuts are cultivated. 

 Fishing: The Lom River provides fish but is heavily impacted by sedimentation from 

mining. 

 Timber extraction: Logging companies operate in the region, contributing to forest 

degradation. 
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Gold mining has significantly altered the landscape and livelihoods of the local population, 

leading to environmental challenges such as deforestation, soil erosion, and water pollution 

(Tchindjang et al., 2018). 

1.8 Definition of Terms 

This section defines key terms and concepts used in the study to ensure clarity and consistency. 

1.8.1 Spatiotemporal Analysis 

Spatiotemporal analysis refers to the study of how spatial patterns change over time. In the 

context of this research, it involves the assessment of environmental changes (land degradation, 

water quality, and vegetation health) in Betaré-Oya over the period 2021–2025 using remote 

sensing and GIS techniques (Fisher et al., 2018; Wang & Liu, 2020). 

1.8.2 Alluvial Gold Mining 

Alluvial gold mining is the extraction of gold particles from riverbeds, floodplains, or sediments 

using manual or mechanized techniques. This process often leads to deforestation, riverbank 

erosion, and water pollution due to the release of mercury, sediments, and other contaminants 

(Aryee et al., 2003). 

1.8.3 Remote Sensing 

Remote sensing is the process of collecting information about the Earth’s surface without direct 

contact, using sensors on satellites, drones, or aircraft. This study uses multispectral and thermal 

remote sensing to detect land degradation, vegetation changes, and water quality variations in 

mining-affected areas (Jensen, 2015). 

1.8.4 Multispectral and Thermal Remote Sensing 

Multispectral remote sensing captures reflected electromagnetic radiation in multiple 

wavelengths (visible, near-infrared, and shortwave infrared) to analyze land cover, vegetation 

health, and water bodies (Xie et al., 2008). 

Thermal remote sensing detects land surface temperature (LST) variations, which can indicate 

soil moisture changes, mine-induced heat anomalies, and vegetation stress (Voogt & Oke, 

2003). 

1.8.5 Land Degradation 

Land degradation refers to the deterioration of soil, vegetation, and water resources due to 

human activities such as mining, deforestation, and poor land management (He & Zhang, 2020). 

In Betaré-Oya, land degradation results from artisanal gold mining, which strips vegetation, 

causes erosion, and alters river courses (Lambin et al., 2001). 
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1.8.6 Land Use/Land Cover (LULC) 

LULC refers to the classification of land based on its usage and physical cover. Land use 

includes agriculture, settlements, and mining, while land cover consists of forests, grasslands, 

and water bodies (Foody, 2002). Satellite imagery is used to analyze LULC changes over time. 

1.8.7 Normalized Difference Vegetation Index (NDVI) 

NDVI is a satellite-derived index used to measure vegetation health and biomass. It is calculated 

as: NDVI = (NIR - RED) / (NIR + RED). Where NIR (near-infrared) and RED are reflectance 

values from satellite imagery. Higher NDVI values indicate healthy vegetation, while lower 

values suggest land degradation or deforestation (Tucker, 1979). 

1.8.8 Normalized Difference Water Index (NDWI) 

NDWI is used to detect water bodies and moisture content in an area. It is calculated as: NDWI 

= (GREEN - NIR) / (GREEN + NIR) Higher NDWI values indicate water presence, while lower 

values suggest dry conditions or contamination (McFeeters, 1996). 

1.8.9 Mine Closure and Rehabilitation 

Mine closure refers to the process of shutting down mining operations in a way that minimizes 

environmental and social impacts (Laurence, 2006). 

Rehabilitation involves restoring degraded mining sites through revegetation, soil stabilization, 

and water treatment to ensure ecological recovery. 

1.8.10 Water Quality Indicators 

Water quality is assessed using physical, chemical, and biological parameters, including: 

 Turbidity (suspended sediments) 

 Dissolved oxygen (DO) levels 

 Heavy metal concentrations (e.g., mercury, arsenic) 

 pH and conductivity 

Remote sensing techniques such as NDWI and spectral analysis can help monitor water 

contamination in mining-affected rivers (Gholizadeh et al., 2016). 

1.9 Organization of the Study 

This dissertation is structured into five main chapters, each addressing different aspects of the 

research. Below is an overview of the content covered in each chapter: 

Chapter 1: This chapter provides the background of the study, highlighting the impact of alluvial 

gold mining on the environment and the need for spatiotemporal analysis using remote sensing. 

It outlines the research problem, objectives, research questions, significance, scope, and 
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limitations of the study. Additionally, it provides a detailed description of the study area and 

defines key terms used in the research. 

Chapter 2: This chapter reviews previous studies on alluvial gold mining and its environmental 

impact, with a focus on land degradation, water quality, and vegetation health. It also explores 

existing remote sensing techniques (multispectral, thermal, radar) used for monitoring mining 

activities, alongside past research conducted in Betaré-Oya and other mining-affected regions. 

Chapter 3: This chapter outlines the research design, data sources, and analytical methods used 

in the study. It provides details on: The satellite datasets (Sentinel, Landsat) used for monitoring 

environmental changes. Spatiotemporal analysis techniques employed to assess land 

degradation, water quality, and vegetation health. The application of SNAP tool, Google Earth 

Pro, Google Earth engine and ArcGIS for image processing, classification, and change 

detection. Validation techniques, including field data collection and accuracy assessment of 

classified images. 

Chapter 4:This chapter presents the findings of the study, including: Spatiotemporal trends in 

land use/land cover changes (deforestation, expansion of mining pits).Water quality analysis 

using spectral indices (NDWI, BSI) and field validation. Vegetation health assessment using 

NDVI. Impacts of mining on soil degradation and temperature anomalies based on thermal 

remote sensing. A discussion on the implications of the findings for environmental management 

and policy-making. 

Chapter 5: The final chapter summarizes the key findings, highlights the study’s contribution 

to knowledge, and suggests strategies for rehabilitating abandoned mining sites. It also outlines 

recommendations for future research on sustainable mining practices and environmental 

restoration in Betaré-Oya. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Geological potential of Cameroon 

Cameroon is underlain by Precambrian rocks, Cretaceous sediments, and Cenozoic sedimentary 

and volcanic formations. Much of the Precambrian is undifferentiated gneisses and migmatites. 

Meso- and Neoproterozoic rocks are exposed in the southeast of the country. Cretaceous 

sediments almost completely cover the Precambrian basement (Belinga, 2001). In northern 

Cameroon the Cretaceous sedimentary facies is mainly continental, while the Cretaceous in the 

coastal zone is mainly marine. A recent volcanic zone crosses Cameroon in a north-easterly 

direction. This line probably follows an important ancient structural zone. Finally, in the south 

of the country we have the Ntem group, which is the only area where archaic rocks are found, 

the most important being granites, gneisses and charnockites (Schluter, 2006). 

The ore minerals present in the country are mainly: gold, diamond, bauxite, kyanite and rutile, 

tin, and cobalt. Gold deposits are found throughout the country, especially in the crystalline 

basement and epimetamorphic sequences. The highest concentrations are found in the east of 

the country, essentially along the borders with the Central African Republic and Chad. In this 

area, its association with the process of microcline formation with the base rock has been 

observed (Kamga et al., 2017). The same occurs for the extreme south, the north (Poli series) 

and the center (Lom series), based on the Congolese region, formed by a volcanic-sedimentary 

environment, and, finally in the west of the country, where rocks are found as mostly intrusive. 

The diamonds are associated with the Cretaceous fluviolacustrine formations of the "Series de 

Carnot", near the border with the Central African Republic and exploited using artisanal 

methods, although they are also associated with gold alluvium (Bakia, 2014). The Carnot series 

is composed of sandstones of Mesozoic age and fluvial origin that, in more recent deposit 

environments, could also have included lacustrine and marsh deposits from one end to the other 

(Delpomdor & Préat, 2015). Consequently, the Carnot sandstone includes various evolutionary 

levels of agglomerates, sandstone, argillite, and siltstones. The geomorphology of the present 

landscape is an important factor in the location and quality of diamond deposits that are exposed 

due to erosion (Chirico et al., 2010). Cassiterite occurs in a small deposit at Mayo Darlé in the 

northwest, near the Nigerian border. The mineralization occurs as porphyry-type stockwork 

veinlets with grades up to 0.3% SnO2 and as vertical and horizontal high-grade (2–20% SnO2) 

greisen veins within host alkali biotite granites, it is defined as alluvial cassiterite (Nwamba et 
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al., 2023). Economic concentration of nickel and cobalt appear in the east of the country, near 

Lomie in a small town called Nkamouna.The ore are associated with laterites and serpentine 

type rocks (Lambiv Dzemua et al., 2012). The feasibility report for the Nkamouna project has 

been submitted in 2011 by SRK Consulting, Knight Piésold, but to date no facility infrastructure 

are build (Africa Intelligence, 2022).Rutile is found in economical quantities at Akonolinga and 

is associated with micabearing schists, it depends of the Yaoundé series. The occurrence of 

rutile in the region east of Yaoundé (Nanga-Eboko and Akonolinga) and west of Yaoundé 

(Eseka-Pouma) is known in alluvial, eluvial and residual deposits since the last century. The 

rutile was exploited between 1935 and 1955 with a total production of 15,000 tons. The rutile 

is of high quality (>95% TiO2) and occurs in various sizes (up to 5 cm of diameter) (Stendal, 

2006). 

2.2 Geology of the East Region 

The East Region of Cameroon is characterized by a complex geological framework that 

includes Precambrian basement rocks, metamorphic formations, and mineral-rich belts. This 

region is known for its significant mineral resources, including gold, diamonds, and other 

valuable minerals, making it an important area for geological studies (Tchameni et al., 2006).  

The East Region of Cameroon is predominantly part of the Central African Orogenic Belt 

(CAOB), which is composed mainly of Archean to Proterozoic rocks. The region features high-

grade metamorphic rocks, granitoids, and supracrustal sequences (Nzenti et al., 1998). These 

geological formations are a result of multiple tectonic events, including the Pan-African 

orogeny.  

The lithology of the East Region is dominated by Precambrian basement rocks, including 

gneisses, schists, and granites. The metasedimentary sequences contain quartzites, 

amphibolites, and migmatites, indicative of high-grade metamorphic processes (Toteu et al., 

2004). The presence of greenstone belts also suggests potential for economic mineralization. 

The structural framework of the East Region is controlled by Pan-African tectonics, leading to 

intense folding, faulting, and shearing. Major fault systems, including the Sanaga and Lom 

faults, influence the region's geological architecture (Ngako et al., 2003). These structures play 

a critical role in the emplacement of mineral deposits. 

The East Region is one of Cameroon's richest in terms of mineral resources. Gold deposits are 

widespread, with artisanal and Semi-mechanized mining being the primary extraction method. 

Diamond occurrences are also common in alluvial deposits along major river systems (Yongue-
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Fouateu et al., 2006). Other resources include bauxite and iron ore, which are yet to be fully 

exploited. 

2.3. Overview of Betare-oya 

Betare Oya is found in the East region of Cameroon in the Lom and Djerem Division. The area 

is characterized by two main hydrographic basins namely; Lom basin in the North West and 

Kadei basin in the South East. The geology of Betare Oya is dominated by volcano-sedimentary 

rocks of Neoproterozoic in the Lom metamorphize group (Eloung et al.,2020). 

The climate is equatorial type with four seasons (2 dry seasons and 2 rainy seasons) with some 

variations which are particular to them due to the location at the foot of the Adamawa plateau. 

Humidity and cloud cover are relatively high and precipitation ranges from 1500 to 2000mm 

per year except in the extreme east and North regions where it is slightly less. 

The Betare-Oya gold districts are watered by two main rivers: The Lom and the Pangar. These 

2 rivers receive water from a large network of small rivers, the most important of which are 

Mba, Mari, Mbal, and Kpawara. The hydrologic regime of the river Lom in Betare-Oya is 

controlled by rainfall. The lower monthly flow rate is observed in February (56m3s-1), while the 

maximum flow rate is observed in October (328m3s-1) (Ngueyep et al., 2020).  

The vegetation is dominantly of primary nature comprising of lowland tropical rainforest, which 

grows progressively thicker towards the south. The land area is sparsely cultivated and most of 

the natural vegetation is still intact (Manga et al., 2017). 

The people of Betare Oya region heavily rely on artisanal gold mining for their livelihoods. It 

is a key source of income, often more lucrative than other local options, and a tradition passed 

through generations. This strong dependence stems from limited alternative employment and 

the relatively easy entry into this form of mining (Funoh, 2014). 

2.4 Alluvial gold 

Gold has been a valuable and sought-after metal for centuries. Alluvial gold refers to gold 

deposits formed by the erosional processes of rivers and streams, transporting and concentrating 

gold in riverbeds, floodplains, and deltas (Smith et al., 2020). These deposits have been an 

essential source of gold throughout history, supporting artisanal and large-scale mining 

activities (Johnson & Clark, 2019). Alluvial gold mining has played a crucial role in the 

economies of many gold-producing regions. 
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The process of alluvial gold formation is influenced by a combination of geological, 

hydrological, and environmental factors. Understanding these processes is essential for 

effective exploration and sustainable mining.  

2.4.1 Geological processes of formation 

Alluvial gold formation is primarily driven by the weathering and erosion of primary gold 

sources, such as quartz veins within hard rock deposits (Brown & Taylor, 2018). Over time, 

mechanical and chemical weathering release gold particles, which are transported by water and 

deposited based on size, shape, and weight (Williams, 2021). The movement of gold is 

influenced by factors such as river gradient, water velocity, and sediment load. 

As gold-bearing rocks are exposed to weathering, gold particles are freed and carried by surface 

water to lower elevations. The process involves oxidation, dissolution, and mechanical 

breakdown, which lead to the separation of gold from its host minerals. Over extended periods, 

these particles accumulate in areas of reduced water flow, forming placer deposits (Harrison & 

Green, 2020). 

2.4.2 Characteristics and occurrence 

Alluvial gold is commonly found as flakes, nuggets, or dust, with its size and purity depending 

on the distance traveled from the primary source (Anderson, 2022). The physical properties of 

gold, such as its high density and malleability, influence its deposition in riverbeds and 

floodplains. 

Deposits are classified based on their location and mode of formation sediments (Taylor et al., 

2017).Common types include: 

 Eluvial Deposits: Found close to the primary source, formed due to in-situ weathering. 

 Colluvial Deposits: Occur on hill slopes, transported by gravity and short-distance 

runoff. 

 Alluvial Deposits: Found in active river channels, terraces, and floodplains. 

 Paleo-Placer Deposits: Ancient alluvial deposits buried under later  

Alluvial gold deposits are widely distributed across different geographical regions. Major 

alluvial gold fields are found in Australia, Canada, Ghana, and Brazil, where extensive placer 

mining operations have been carried out for decades (Wilson, 2020). The presence of gold in 

these regions is closely linked to tectonic activities and past glacial movements. 
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2.4.3 Exploration techniques 

The exploration of alluvial gold deposits requires a combination of geological, geophysical, and 

geochemical techniques to identify promising locations (Martinez & Lopez, 2018). Traditional 

methods include panning and trenching, while modern exploration utilizes remote sensing, 

geophysical surveys, and borehole sampling (Lewis & Scott, 2023). 

Some of the commonly used exploration techniques include: 

 Panning: A simple method used by prospectors to identify gold concentrations in river 

sediments. 

 Geophysical Surveys: Methods such as ground-penetrating radar (GPR) and electrical 

resistivity help map subsurface deposits. 

 Sediment Sampling: Collecting and analyzing stream sediments to detect gold 

anomalies. 

 Drilling and Bulk Sampling: Used for resource estimation in larger mining 

operations (Patterson et al., 2021). 

2.5 Alluvial gold mining 

Alluvial gold mining, a practice dating back to ancient civilizations, remains a globally 

significant method for gold extraction (Mathioudakis et al., 2023). While employed worldwide, 

it is particularly prevalent in developing countries, where artisanal and small-scale gold mining 

serves as a crucial economic driver for local communities (NOVAFRICA, 2023). This reliance 

on artisanal small scale gold mining, however carries substantial environmental consequences. 

The often-informal nature of these mining operations contributes significantly to habitat 

destruction, water pollution and critically, widespread mercury contamination (Mathioudakis et 

al., 2023). The gold extracted through ASGM enters global markets, linking these local 

environmental challenges to international supply chains, thereby highlighting the need to 

sustainable practice and responsible practices and responsible resource management on a global 

scale (Funoh, 2014). 

2.5.1 Alluvial gold mining in Africa 

Gold mining in the African continent began as early as the 5th century, with Mali and Ghana 

being the main producers of the precious metal, known in Europe as the “Gold Coast”. Up until 

the 18th century, gold bars and coins were the primary exports of African states, supplying them 

to mediterranean countries where gold served as the main currency. Today, ASGM remains a 

crucial livelihood source for millions, particularly in countries like Ghana, Mali, DRC. These 
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operations, often informal, utilize basic techniques and equipment, contributing significantly to 

local economies. 

However, this economic activity comes with severe environmental and social consequences. 

ASGM leads to appropriation of the land belonging to the local communities, impacts on health, 

alteration of social relationships, destruction of forms of community subsistence and life, social 

disintegration, radical and abrupt changes in regional cultures, displacement of other present 

and/or future local economic activities. All these have added to the hazardous and unhealthy 

working conditions of this type of activity.  

The economic benefits of ASGM, while undeniable, must be balanced against its detrimental 

impacts. Sustainable practices are essential to mitigate these negative effects and ensure long 

term benefits. This requires international cooperation, responsible sourcing initiatives and the 

implementation of effective regulatory frameworks. Efforts to formalize ASGM, provide miners 

with safer technologies, and promote environmental awareness are crucial steps. Ultimately, a 

holistic approach that acknowledges the complex interplay of history, economics, and 

environment is necessary to address the challenges of alluvial gold mining in Africa and ensure 

a more sustainable future for the continent (Eloung et al.,2020). 

2.5.2 Alluvial Gold concentration methods 

The methods considered mainly involve the physical separation of gold from 'gangue' (which 

ranges from vein material in bed-rock deposits to sand and silt grade material in alluvial 

deposits) using gravity-based processing methods. Gold has a high specific gravity (19.3 g/cm3) 

in relation to most common gangue minerals (ranging from 2.65 to 3 g/cm3) and is therefore 

eminently suitable for gravity processing. Considering the minute quantity of gold normally 

present in even the most auriferous ores (down to l g/tone in bed-rock and 0.25 g/tone in alluvial 

deposits) gravity processing is virtually the only method effective at producing the 

concentration ratios required, especially with the high volume throughputs associated with 

alluvial mining. 

It should be noted that recovery data are specific to particle-size, ore nature and processing 

operation. Certain gold grain characteristics influence the efficiency of gold recovery methods, 

particularly gravity separation. The influence of density upon the behaviour of a gold grain will 

lessen as the surface area to mass ratio increases. Gold is usually nonspherical, and it is typically 

flakier with decreasing grain size. This is mainly due to the malleability of gold, distorting rather 

than fracturing in response to loading and impact (during crushing and grinding of the ore, and 
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alluvial transport). This irregular shape leads to porosity; cavities and pores are often infilled 

with lower density material lowering the density of the composite particle (Wang & Poling, 

1983). 

The flaky shape, porosity and hydrophobic surface properties often cause gold to float. This is 

especially a problem for fine grained gold. Gold grain surfaces are often coated with an 

hydrophobic organic layer or iron oxide coatings and some are leached free of impurities (such 

as silver) leaving a rim of pure gold, all of these render the surface hydrophobic (Wang & 

Poling, 1983). The mineralogical character of the gold is often not considered when planning a 

processing plant, especially if the gold responds well to standard gravity and cyanidation 

processes. However, if the gold recovery is poor (430%) the ore is termed “refractory” and a 

detailed mineralogical investigation becomes necessary.  This will involve the determination of 

the mode of occurrence of minute gold grains and the proportion of “invisible” gold. Gold 

usually occurs as “native gold”. A solid solution exists with many heavy metals including 

electrum (Au, Ag), argentian gold (Au, Ag), cuprian gold (Au, Cu), palladian gold (Au, Pd), 

mercurian gold (amalgam) (Au, Hg) and Au-Ag-Hg alloy. Other gold-bearing minerals occur 

only in very small amounts including gold tellurides, gold selenides, gold sulphides and 

intermetallic compounds such as amalgam (Au, Hg), aurostilbite (Au, Sb) and maldonite (Au, 

Si) (Petruk, 1989). 

 Panning 

Panning uses water to separate heavy gold particles from other lighter particles within a medium 

sized pan. In this process sediment or ore thought to contain gold is placed in a wide, curved 

pan along with water. The miner moves the pan in a series of motions designed to eject lighter 

sediments. The density of gold keeps it on the bottom of the pan as lighter material is ejected 

along with water. After a series of successful iterations have been completed, gold will be 

exposed on the bottom of the pan for the miner to recover.   

Panning works best when gold is coarse and well liberated. Under right conditions, panning can 

produce high grade concentrates or even liberated gold. Then miners can employ gold recover 

methods such as direct smelting, although many panning operations lead to directly recoverable 

gold. 

Panning offers miners a low cost method of gravity concentration but it requires time and skill 

to be effective. One of the major drawbacks to panning is that miners must pan small amounts 
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of concentrate. Therefore, panning is often done after other methods of gravity concentration 

such as sluicing have completed. 

 

Figure 2.1: Panning Process 

 Sluicing 

Sluices use water to wash ore or alluvium down a series of angled platforms. As water washes 

sediment down a sluice, gold particles sink and are captured by material covering the bottom of 

the sluice, often carpets. Sluices are usually inclined at 5 to 15 degree angle. As moving water 

travels down a sluice, it generates greater force and keeps gold particles from sinking easily. 

For this reason most gold is captured at the beginning of the sluice. Carpets or other capturing 

devices on the bottom of sluices can be removed and washed in a bucket to remove the captured 

dense material. Sluice design can lead to higher gold recovery if the force of the water traveling 

through the sluice is decreased. A series of rifles can help break the flow to improve recovery. 

A zig zag sluice also achieves this by creating a drop between the first and second platform that 

disrupts the velocity of the water as it travels down the sluice (Martins et al, 1993). 

 A simpler alternative to the zig zag sluice is a combination of two sluice surfaces. The first is 

tilted at a steeper angle then the second, decreasing the velocity of the water as it hits the second 

sluice, increasing gold recovery. Sluices can be relatively expensive or affordable depending 

on the complexity of their design. Simple sluices can be a single angled platform a few feet in 

length and others can be very elaborate. Having an available and consistent water supply is 

necessary to have a functioning sluice operation. This can be done with piping, drums, buckets, 
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or natural flowing water bodies. A constant flow will be better than a bucket-driven flow. 

Sluices are good at concentrating large amounts of ore and sediment in a relatively short time 

but often do not yield concentrates with high amounts of gold. The resulting concentrate must 

usually undergo further methods of concentration, such as panning (Martins et al, 1993). 

 

Figure 2.2: Sluicing Process 

 Shaking Table 

Shaking tables are elevated tables tilted to one side with raised ridges running horizontally down 

their length. Mineral feed (crushed ore or sediment) and water are released at one end of the 

table. The water washes the feed down the table. As the material is washed down the table, 

specialized grooves trap gold and direct it to collection points on the side of the table as lighter 

minerals are washed away. During this process, the table is continually shaken by a motor to 

agitate the material and aid in the separation of gold particles. Shaking tables are very effective 

and can concentrate sizeable amounts of ore at a time, providing high grade concentrates and 

liberated gold, but they are also relatively expensive and require some experience to operate.   

The commonest form of shaking table used is the wet table (the 'dry' form is known as an air 

table, which uses air as the fluid separating medium). It consists of a flat table (or 'deck') with 

parallel riffles to trap the heavy minerals. The 'deck' is vibrated longitudinally and inclined 

laterally during operation. Perforated pipe feeds wash water from the upslope side. The slurries 

feed is introduced at the top upslope corner, minerals in the feed segregate. The heavy minerals 

sink to the deck, migrate along the riffles and are discharged over the end of the deck. The light 

minerals, entrained in the water, pass straight over the riffles and down to the bottom and so to 
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the tailings. Shaking tables are effective in the processing of Aerial in the size range 3 mm to 

15 pm. Shaking tables have been used to recover 88% of the gold present in a concentrate 

produced on a spiral (Eltham, 1984). 

 Wang & Poling (1983) record that up to 90% of gold coarser than 40 pm can be recovered, 

whereas typically only 20% of 20 - 40 pm gold can be recovered. The efficiency drops greatly 

below 40 pm. The following table gives the size distribution of gold present in a shaking table 

middling product from a commercial mine in Malaysia i.e. material that had passed over the 

table and was stockpiled for possible later reprocessing. Estimated assay of around 10 tons is 

higher than the mined ore. There is considerable scope for increased yield with more effective 

processing.  Particle-size distribution of gold in a middling product from a gold mine in 

Malaysia 

 

Figure 2.3: Shaking table 

 Spiral Concentrators 

The spiral concentrator is described as a 'low feed rate, low feed density' flowing film gravity 

separators. It consists of a helical conduit of modified semi-circular cross-section, usually with 

between 3 and 5 complete 'turns' (Wills, 1992). Material is fed onto the top of the spiral as a 

slurry with typically 25 to 30% solids by weight. As the material flows spirally downwards 

the particles stratify due to factors such as centrifugal force, differential settling, hindered 

settling and reverse classification. There is usually a density gradation across the profile of the 

spiral with heavy minerals concentrating next to the axis and minerals of lower density being 
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swept to the outer edge. Concentrate, middling and tailing products are collected with the use 

of adjustable splitter plates  

Spirals are effective in the processing of material in the size range 3 mm to 75 pm (although 

up to 5 % 'slimes' can be tolerated with sufficient wash water). Spiral performance is 

controlled by: the diameter and pitch of the spiral; the pulp density (i.e. the solids content of 

the slurry); the location of the splitters and take-off points; and, the volume and pressure of 

wash water. In one operation hydrocyclones are used to deslime (removing particles nominally 

finer than 30 pm in this case) the feed to spirals (only rejecting gold finer than 14 pm) and this 

leads to spiral recoveries of up to 65% (Eltham, 1984). At New Celebration gold mine in 

Western Australia a series of rougher (producing gold pre-concentrates) and cleaner 

(removing impurities from gold concentrates) spirals consistently achieve gold recoveries of 

70 to 80% (Martins et al, 1993). Spirals are also known to be used for the recovery of fine flat 

free gold (recoveries up to 85%) and gold finer than 37 pm (recoveries up to 50%) (Feree, 

1993). 

 

Figure 2.4: Spiral concentrator 

 Bowl Concentrator 

A bowl concentrator consists of a rotating cylinder that segregates heavy minerals from light 

minerals by a combination of centrifugal force and wash water action. The Knelson bowl 

concentrator claimed to recover "gold particles ranging from 6 mm to less than one micron in 

a single pass" (sales brochure). Recovery is effective down to approximately 30 pm. Typically 
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Knelson concentrators have been retrofitted to process flotation tailings to recover gold 

coarser than 100 pm and also to replace mineral jigs as a means of recovering coarse gold 

ahead of flotation and cyanidation. A fully-automated Knelson concentrator was installed at 

the Dome Mine, South Porcupine, and Ontario in replacement for a jig circuit and exceeded 

jig gold recovery using only a tenth of the volume of jig feed (Brewis, 1995).  

A similar concentrator was installed at the Golden Giant mine in north central Ontario which, 

accompanied by a single stage of tabling, accounted for up to 30% of the overall gold recovery. 

This was free-gold recovered directly from the grinding circuit prior to cyanidation (Brewis, 

1995). Removal of coarser free gold ahead of cyanidation leads to savings from lowered 

carbon stripping (recovery of gold from solution) and a consequent reduction in the use of 

cyanide acid and other consumables. Also removal of free gold grains ahead of the grinding 

circuit will ultimately improve flotation efficiency as there is a reduction in gold 'smearing' 

onto other minerals and effecting flotation properties.  

 

Figure 2.5: Bowl Concentrator 

2.5.3. Alluvial gold recovery methods 

 Mercury Amalgamation  

Gold is commonly extracted from process concentrates using mercury which combines with 

gold to form an 'amalgam'. The gold is removed from the amalgam by evaporation of the 

mercury. Mercury is commonly added to sluice box riffles and also to grinding mills 

(Subasinghe & Maru, 1994). Also gold can be recovered from fine-grained tailings by washing 

them over a copper plate covered with mercury. Mercury amalgamation is effective for the 

recovery of gold from material in the size range 1.5 mm to 70 pm. Gold recovery efficiency 
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falls for grains finer than 70 pm and typically only 65% of free gold grains finer than 75 pm 

Guinea (Eltham, 1984). 

Mercury is occasionally poured between the riffles on a sluice box in an attempt to capture 

fine-grained gold. However the contact time between the mercury and the gold is not sufficient 

to allow amalgamation to occur. Often fine gold remains suspended in the flow of material 

above the riffles and does not come into contact with the mercury. Up to 30% of the mercury 

used in sluices in Papua New Guinea finds its way directly into local rivers. Passing the 

tailings over ‘amalgamation units’ or through mercury filled columns has been recommended 

as a method of recovering this fine gold. However these are ultimately unsatisfactory as they 

still pose a threat to the environment (Subasinghe & Maru, 1994).  

 Cyanidation 

Cyanidation is the process whereby gold is recovered using a cyanide solution. Gold is 

dissolved using the cyanide solution and the resulting complex, Au (CN) can be removed from 

solution by various methods (Deschenes, 1986):  

i) The “Merill-Crowe” process, is used to remove the gold from the cyanide by 

cementation with powdered zinc.  

ii) Activated carbon absorption (otherwise known as C-I-P, carbon-in-pulp) is used for 

the processing of ores with a high slimes content which are difficult to treat by the 

Merrill-Crowe process. The absorption of gold is either performed by:  

i) Carbon-in-column from solutions typically from heap leaching which are virtually 

free of suspended material 

ii) Carbon-in-pulp (CIP) from leach pulps typically slimes, ground ores and calcines.  

An alternative to CIP is RIP (Resin-in-pulp) which is easier to use and less 

sensitive to the influence of naturally occurring carbon 

iii) Carbon-in-leach (CIL) whilst leaching is still in progress. Typically, with ores 

containing carbonaceous material that could “rob” the gold from the “pregnant” 

(gold-bearing) solution. The carbon is reactivated by heating to 600 to 900°C in a 

reducing atmosphere. 
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2.6 Remote sensing 

Remote sensing in a general sense refers to obtaining information about objects or areas by 

using electromagnetic radiation (light) without being in direct contact with the object or area. It 

occurs in the day-to-day business of people. Common activities such as reading the newspaper, 

watching cars, looking at a lecturer during classes, are all remote sensing activities of the human 

eye. The human eyes register the solar light reflected by these objects and the brain interprets 

the colors, the grey tones and intensity variations. These data are translated into useful 

information. The human eye however is limited to a small part of the electromagnetic spectrum. 

In remote sensing various kinds of tools and devices are used to make electromagnetic radiation 

outside this range visible to the human eye, especially the near infrared, middle infrared, thermal 

infrared and microwaves (De jong et al., 2004). Remote sensing, also called Earth Observation 

(OE), refers in a general sense to the instrumentation, techniques and methods used to observe, 

or sense, the surface of the earth, usually by the formation of an image in a position, stationary 

or mobile, at a certain distance remote from that surface. In a more precise way, remote sensing 

seeks to be able to have a total view of a large area at the same time in one view. In remote 

sensing, the electromagnetic radiation coming from an object, in case of earth observation this 

object is the earth’s surface, is being measured and translated into information about the object 

or into processes related to the object. (De jong et al., 2004). Remote sensing techniques allow 

taking images of the earth surface in various wavelength region of the electromagnetic spectrum 

(EMS). One of the major characteristics of a remotely sensed image is the wavelength region it 

represents in the Electromagnetic Spectrum. Some of the images represent reflected solar 

radiation in the visible and the Near infrared regions of the electromagnetic spectrum, others 

are the measurements of the energy emitted by the earth surface itself that is in the thermal 

infrared wavelength region. Remote sensing imagery has many applications in mapping land-

use and cover, agriculture, soils mapping, forestry, city planning, archaeological investigations, 

military observation, geomorphological surveying, water quality dynamics and urban growth 

(Agarwal.,2011) 

2.6.1 Sensors in Remote Sensing 

As stipulated by Boyd.,2005, sensors are instruments that have the capability of measuring 

electromagnetic radiation. The classification of sensors takes into considerations the following 

sensor characteristics, platforms and satellite orbits characteristics, and application domains 
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(Denègre., 2013). Boyd.,2005 further explains that they can be classified into two types as 

enlisted and described below: 

 Passive sensors  

Passive sensors do not have their own source of radiation. They are sensitive only to radiation 

from a natural origin, usually reflected sunlight or the energy emitted by an earthly object. The 

classical example of a passive imaging sensor is the camera, which records the distribution of 

radiation from an object on a photosensitive emulsion spread out on a film. Other examples are 

the multi-spectral scanner, the thermal scanner and the microwave radiometer. Both sensor and 

object are passive. 

 Active sensors  

Active sensors have a built-in source of radiation. The object is passive. Examples are RADAR 

(radio detection and ranging) and LIDAR (light detection and ranging). Radiation can be 

recorded in an analogue form, (the aerial photograph is a particular example,) or radiation can 

be stored in a digital arrangement, a set of signal values on a magnetic device CD-rom or DVD, 

as in most remote sensing records at present. Visualized images may be derived from digital 

data of imaging sensors.  

2.6.2 The sources of the electromagnetic radiance 

De Jong et al., (2004) explains that electromagnetic radiation is a characteristic of numerous 

physical processes where all materials with a temperature above 0 kelvin or +273 Celsius have 

the power to emit electromagnetic energy. Objects on or near the earth’s surface are able to 

reflect or scatter incident electromagnetic radiation emitted by a source, which may be artificial, 

such as flash light, laser or microwave radiation, or natural, such as the sun. The visible, near-

infrared (NIR) and middle-infrared (MIR) part of the electromagnetic spectrum, measures solar 

radiation reflected by objects at the earth’s surface. The thermal-infrared (TIR) part, particularly 

in the atmospheric window at about 10 µm measures emitted radiation by objects at the earth’s 

surface, be it that this radiation is originating from the sun. And the microwave part of the 

spectrum, both reflection of solar light and emission occur at very low energy rates. As a result, 

radiation mostly is transmitted to the earth’s surface by an antenna on board the remote sensing 

system and, subsequently, the amount of radiation that is reflected is measure (backscattered) 

towards the same antenna.  
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Figure 2.6: Illustration of remote sensing (Aggarwal, 2011) 

Energy Spectrum Wavelengths used in Remote Sensing are; 

 Ultraviolet – 0.3 to 0.4 μm 

 Visible – 0.4 to 0.7 μm 

 Near Infrared – 0.7 to 1.3 μm  

 Middle Infrared – 1.3 to 2.8 μm  

 Thermal Infrared – 2.4 to14 μm 

 Microwave – 1 mm to 1 m. 

2.6.3 Stages in Remote Sensing 

The following steps have been summarized by Aggarwal., (2011) as the stages involved in  

remote sensing (Figure 2.6): 

 Emission of electromagnetic radiation, or EMR (sun/self- emission) 

 Transmission of energy from the source to the surface of the earth, as well as absorption 

and scattering 

 Interaction of EMR with the earth’s surface: reflection and emission 

Transmission, reception and (pre-) processing 

The energy recorded by the sensor has to be transmitted, in electronic form, to a receiving and 

processing station where the data are processed into an image (digital and/or hardcopy).  

Generally, the provider of the image data will already apply some pre-processing. Pre-

processing operations are intended to correct for sensor- and platform-specific radiometric and 

geometric distortions of data. Radiometric corrections may be necessary due to variations in 

scene illumination and viewing geometry, atmospheric conditions, and sensor noise and 
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response. Each of these will vary depending on the specific sensor and platform used to acquire 

the data and the conditions during data acquisition. Also, it may be desirable to convert and/or 

calibrate the data to known (absolute) radiation or reflectance units to facilitate comparison 

between data. 

Image analysis and interpretation 

The outstanding advantage of digital recordings is that numerous manipulations can be applied 

to the observational data according to the methods of digital image processing and pattern 

recognition. A much extended set of algorithms can be applied in an automatic way by using 

one of the various software packages for image analysis that are on the market. In principle, 

three categories of information can be derived from remote sensing: 

 The assignment of class labels to the individual pixels or objects in an image, called 

classification creating, for example, a thematic land cover map; 

 The estimation of object properties from remote sensing for example, assessing the 

amount of biomass of agricultural crops or forest types; 

Observing, for example, the properties of vegetation, one has to pay attention to numerous 

variables. Examples of these are the irradiance, the direction of the radiation source, the 

condition of the atmosphere and its influence on the detected radiation, the presence of 

surrounding objects, the viewing angle of the sensor and, last but not least, the variations 

pertinent to the vegetation such as growing stage, moisture content, leaf area index, number of 

leaf layers and soil background. In summary, information about the earth’s surface and its 

features may be obtained from images by detection on the basis of: 

 Spectral characteristics (wavelength or frequency, reflective or emissive properties); 

 Spatial characteristics (viewing angle of the sensor, shape and size of the object, 

position,  

 Site, distribution, texture); 

 Temporal characteristics (changes in time and position); 

 Polarization characteristics (object effects in relation to the polarization conditions of 

the transmitter and receiver). 

These information-extraction algorithms can generally only be applied to earth observation 

images when the images are radiometrically processed that is, converted from raw digital 

numbers into physical units such as radiance or reflectance. Such correction should account for 
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sensor characteristics, terrain topography and atmospheric conditions. Furthermore, images 

must be geometrically corrected for the effects of scanner distortions of the image, orbital 

geometry and figure of the earth.  

The final product 

The output from remote sensing can be in various forms and often is information that is used as 

input for further analysis, for example, in a geographical information system (GIS). On the one 

hand, information present in a GIS can help in the analysis and interpretation of remote sensing 

data. On the other hand, the results of a remote sensing analysis can be stored in a GIS. 

Subsequently, this information can be combined with other types of information for various 

types of studies or applications. As an example, a land cover map can be considered as an ‘end 

product’ of a remote sensing analysis. It can be used as input in a study towards groundwater 

pollution by combining it with various spatial and statistical data. (Jong et al., 2004) 

2.6.4 Optical satellites used in remote sensing 

LANDSAT 

Landsat series is a joint USGS and NASA-led enterprise for Earth Observation that represents 

the world's longest running system of satellites for moderate-resolution optical remote sensing 

for land, coastal areas and shallow waters. 

Landsat-1 to 3: Landsat-1 was launched in 1972, and was the first Earth observation satellite 

with the goal to monitor the world's land. Successful launches followed with Landsat-2 in 1975 

and Landsat-3 in 1978. 

Landsat-4 and 5: Landsat-4 was launched in 1982 and Landsat-5 in 1984. It carried the Multi 

Spectral Scanner and Thematic Mapper instruments 

Landsat-6 satellite failed to achieve its orbit and the communication with satellite was never 

established. The series continues to this day, making Landsat the longest continuous Earth 

imaging programme in history 

Landsat-7 was launched in 1999. It carries the Enhanced Thematic Mapper Plus 8-band 

whiskbroom scanning radiometer instrument. Landsat 7 is capable of generating 15 by 15 m 

resolution images 
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Table 2.1: Landsat 7 Bands, wavelength and resolution 

Band No. Wavelength (µm) 
TM Band 

Information 
Spatial resolution (m) 

8 0.52 - 0.90 PAN 15 

1 0.45 - 0.52 (VIS, blue) 30 

2 0.53 - 0.61 (VIS, green) 30 

3 0.63 - 0.69 (VIS, red) 30 

4 0.77 - 0.90 NIR 30 

5 1.55 - 1.75 SWIR 30 

7 2.08 - 2.35 SWIR 30 

6 10.4 - 12.5 TIR 60 

Landsat-8 was launched in 2013. It carries the Operational Land Imager and Thermal Infrared 

Sensor Operators.   

Table2.2: Generalities of Landsat 8 

Launched date 11 February 2013 

Orbit Height 705 km 

Orbit Type  Sun-synchronous near-polar 

Orbit Period  99 minutes 

Inclination  98.2 

Repeat Cycle  16 days 

Equatorial Crossing Time 10:00 a.m. +/- 15 minutes (United States 

Geological Survey) 
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The Landsat program comprises several generations of satellites, each improving spatial, 

spectral, and radiometric resolution. The most recent missions, Landsat 8 and Landsat 9, 

provide operational land imaging with enhanced sensors such as the Operational Land Imager 

(OLI) and the Thermal Infrared Sensor (TIRS). These advancements enable accurate long-term 

environmental monitoring (Roy et al., 2021). 

Applications of Landsat Imagery 

 Land Degradation Assessment 

Landsat imagery is widely used for assessing land degradation through spectral indices such 

as the Normalized Difference Vegetation Index (NDVI), Bare Soil Index (BSI), and 

Normalized Difference Moisture Index (NDMI). These indices help monitor vegetation loss, 

soil exposure, and moisture content in degraded landscapes (Huang et al., 2020). 

 Land Surface Temperature (LST) Analysis 

Landsat’s thermal bands (TIRS) are used to estimate land surface temperature (LST), which 

is crucial for studying urban heat islands, deforestation, and climate change impacts. The split-

window algorithm and radiative transfer models improve the accuracy of LST retrieval 

(Sobrino et al., 2022). 

 Land Use and Land Cover Change Detection 

With its long historical archive, Landsat data enables change detection analysis for 

deforestation, urban expansion, and agricultural transformation. Machine learning techniques, 

such as random forests and deep learning, are increasingly applied to classify land use patterns 

from Landsat images (Belward et al., 2021). 

Case Studies Using Landsat Imagery 

 Desertification in the Sahara 

A study using Landsat NDVI and BSI indices to analyze desertification trends in the Sahara 

between 1985 and 2020 found a significant expansion of arid zones. Long-term analysis 

demonstrated a decline in vegetation due to climate change and overgrazing (Touati et al., 

2021). 

 Deforestation in the Amazon 

Landsat imagery has been instrumental in tracking deforestation in the Amazon rainforest. A 

combination of NDVI and LST analysis between 2000 and 2022 showed extensive tree cover 

loss due to illegal logging and agricultural expansion (Souza et al., 2022). 

Sentinel 
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Sentinel satellite imagery, developed by the European Space Agency (ESA) under the 

Copernicus Program, provides high-resolution, multi-temporal, and multi-spectral remote 

sensing data for various environmental applications. The Sentinel constellation consists of 

multiple satellites, including Sentinel-1 (SAR), Sentinel-2 (optical multispectral), Sentinel-3 

(ocean and land monitoring), and others, which offer significant advancements in Earth 

observation for scientific research and policy-making (ESA, 2022). 

. Advantages of Landsat Images 

 Long-Term Data Availability: Landsat has been operational since 1972, providing a 

long-term dataset for historical analysis. 

 Consistent Temporal Resolution: Landsat satellites provide data every 16 days, useful 

for monitoring long-term environmental changes. 

 Thermal Imaging Capability: Landsat 8 and 9 include Thermal Infrared Sensor (TIRS), 

beneficial for land surface temperature and moisture studies. 

 Higher Radiometric Resolution: Landsat 8 and 9 have 12-bit radiometric resolution, 

allowing better detection of subtle spectral variations. 

 Global Coverage: Landsat provides systematic and continuous global coverage, making 

it suitable for large-scale environmental studies. 

Sentinel Mission Overview 

The Sentinel satellite program comprises several missions designed to monitor different aspects 

of the Earth's surface. The key Sentinel missions include: 

Sentinel-1: Synthetic Aperture Radar (SAR) for all-weather, day-and-night land and ocean 

monitoring. 

Sentinel-2: Optical and multispectral imaging for land monitoring, vegetation analysis, and land 

use classification. 

Sentinel-3: Ocean and land surface monitoring, including sea surface temperature, vegetation, 

and atmospheric composition. 

Sentinel-5P: Atmospheric monitoring for air pollution and greenhouse gas emissions. 

Sentinel-6: High-precision sea-level monitoring. 
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Table 2.3: Sentinel 2 Bands, wavelength and resolution 

Sentinel

-2 bands  

Characteristi

c 

Sentinel-2A  Sentinel-2B   

Central 

wavelengt

h (nm)  

Bandwidt

h  

(nm)  

Central 

wavelength 

(nm)  

Bandwidt

h (nm)  

Spatial 

resolutio

n (m)  

1  
Coastal 

aerosol 
442.7 21 442.2 21 60 

2  Blue 492.4 66 492.1 66 10 

3  Green 559.8 36 559.0 36 10 

4  Red 664.6 31 664.9 31 10 

5  
Vegetation 

red edge 
704.1 15 703.8 16 20 

6  
Vegetation 

red edge 
740.5 15 739.1 15 20 

7  
Vegetation 

red edge 
782.8 20 779.7 20 20 

8  NIR 832.8 106 832.9 106 10 

8A   Narrow NIR 864.7 21 864.0 22 20 

9  Water vapour 945.1 20 943.2 21 60 

10  
SWIR – 

Cirrus 
1373.5 31 1376.9 30 60 

11  SWIR 1613.7 91 1610.4 94 20 

12  SWIR 2202.4 175 2185.7 185 20 

 

 

https://en.wikipedia.org/wiki/Red_edge
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Sentinel-2: Multispectral Analysis for Environmental Monitoring 

Sentinel-2, launched in 2015, is specifically designed for high-resolution multispectral imaging 

of land surfaces. It provides 13 spectral bands ranging from visible to shortwave infrared 

(SWIR), enabling applications such as vegetation monitoring, land use/land cover 

classification, and water quality assessment (Drusch et al., 2012). The mission offers a high 

spatial resolution (10m, 20m, and 60m) and a frequent revisit time (5 days), making it highly 

suitable for environmental change detection. 

Applications of Sentinel Imagery 

 Land Degradation Assessment 

Sentinel imagery is widely used for monitoring land degradation processes such as 

deforestation, soil erosion, and desertification. Multispectral indices such as NDVI (Normalized 

Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), and BSI (Bare 

Soil Index) derived from Sentinel-2 data have been instrumental in tracking vegetation loss and 

soil exposure (Zhu et al., 2020). 

 Water Quality Monitoring 

Sentinel-2 and Sentinel-3 provide essential data for monitoring water bodies by assessing 

parameters such as turbidity, chlorophyll-a concentration, and suspended sediments. The 

Normalized Difference Water Index (NDWI) is commonly used to evaluate surface water extent 

and water quality variations (Pahlevan et al., 2019). 

 Climate Change and Urban Expansion 

Sentinel data supports climate change studies by providing long-term land surface temperature 

(LST) trends, urban heat island analysis, and changes in vegetation phenology. The integration 

of Sentinel-1 SAR with Sentinel-2 optical data enhances urban expansion monitoring and 

infrastructure growth analysis (Pesaresi et al., 2021). 

Case Studies Using Sentinel Imagery 

 Land Degradation in the Sahel 

A study in the Sahel region utilized Sentinel-2 NDVI and NDMI indices to assess vegetation 

degradation trends from 2016 to 2023. The results revealed a decline in vegetation health due 

to increased drought frequency and land-use changes (Dossa et al., 2023). 

 Monitoring Deforestation in the Amazon 

Sentinel-1 and Sentinel-2 data were used to map deforestation patterns in the Amazon 

rainforest. Time-series analysis demonstrated significant vegetation loss in mining-affected 
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areas, with Sentinel-1 SAR detecting deforestation under cloud cover conditions (Silva et al., 

2022). 

Advantages of Sentinel Images 

Higher Spatial Resolution: Sentinel-2 provides up to 10m resolution in visible and near-infrared 

bands, compared to Landsat's 30m, offering finer details. 

Frequent Revisit Time: Sentinel-2 satellites revisit the same location every 5 days, significantly 

improving temporal resolution compared to Landsat. 

More Spectral Bands: Sentinel-2 has 13 spectral bands, including dedicated bands for 

vegetation and water monitoring, enhancing accuracy in index calculations. 

Free and Open Access: Similar to Landsat, Sentinel-2 data is freely available, promoting 

extensive research and application. 

Better Cloud Coverage Handling: Sentinel-2's short revisit time allows for better selection of 

cloud-free images. 

Application-Based Comparison between Landsat and Sentinel 

 NDVI & Vegetation Monitoring: Sentinel-2’s higher spatial and temporal resolution 

offers more detailed vegetation analysis. 

 Water Quality and NDWI: Sentinel-2’s additional bands improve water body 

delineation and quality assessment. 

 LULC Classification: Higher resolution Sentinel-2 data improves land cover 

classification accuracy. 

 Historical Change Detection: Landsat’s long-term archive makes it ideal for tracking 

environmental changes over decades. 

2.7 Spatiotemporal Analysis 

Spatiotemporal analysis is a method of examining data that considers both the spatial (location 

and temporal (time) aspects, allowing researchers to study how phenomena change across 

different geographic areas over time, revealing patterns and trends that might not be apparent 

when looking at only one dimension (space and time) alone; essentially, it analyzes data 

collected across space and time to understand how things evolve geographically over time 

(Nushrat et al., 2022). 

Spatiotemporal analysis is crucial in environmental monitoring because it allows for the 

simultaneous study of spatial patterns and their changes over time, providing a more 
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comprehensive understanding of environmental processes and enabling better management and 

prediction (Kokinou etal., 2023). 

By analyzing data across different locations, researchers can pin point areas with high pollution 

levels, sensitive ecosystems, or areas particularly vulnerable to climate change (Sahragard et 

al). Spatiotemporal analysis can help identify potential sources of pollution or environmental 

degradation by correlating spatial patterns with temporal changes in human activities or natural 

phenomena (Jiajia et al., 2024). 

2.7.1 Methods and techniques used in spatiotemporal analysis 

Spatiotemporal analysis encompasses a range of methods and techniques designed to 

understand phenomena that vary across both space and time. These methods are crucial for 

analyzing dynamic processes, such as environmental changes, urban development, and disease 

spread.  

Time series analysis 

Purposed: To identify patterns, trends, and relationships in data collected over time, and make 

forecasts and predictions about future values based on the observed historical data (Yen., 2023). 

Techniques: 

 Trend analysis: Examines changes in data over both time and location, revealing 

patterns and relationships that might be missed by analyzing space or time alone 

(Hernandez et al.,2025). 

 Seasonality Analysis: Identifying and understanding recurring patterns within the data 

that occur at fixed time intervals, such as daily, weekly, or yearly cycles, to understand 

the influence of seasonal factors on spatial distributions and trends (Kenton.,2020). 

 Autocorrelation Analysis: examines the correlation between data points at different 

time lags (Noble and Kavlakoglu, 2024). 

 Spectral Analysis: Decomposes spatiotemporal data (data varying both in space and 

time) into spatial and temporal components, allowing for the analysis of frequencies and 

wave vectors in this dimension to reveal underlying dynamic patterns (Szymko et al., 

2021). 

2.7.2 Spatiotemporal Indices for environmental monitoring 

 Bare Soil Index (BSI) 

The Bare Soil Index (BSI) is a remote sensing-derived index used to identify and quantify bare 

soil surfaces. It utilizes spectral bands from satellite imagery to distinguish bare soil from 
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vegetation, water bodies, and built-up areas (Zhao et al., 2018). The importance of BSI has 

grown in environmental monitoring, particularly in land degradation studies, agricultural 

assessments, and urban expansion monitoring (Roy et al., 2020). 

BSI Calculation and Methodology 

BSI is calculated using the following formula:  

BSI = [(SWIR1 + Red) - (NIR + Blue)] / [(SWIR1 + Red) + (NIR + Blue)] 

For Landsat 8: 

BSI = [(Band 6 + Band 4) - (Band 5 + Band 2)] / [(Band 6 + Band 4) + (Band 5 + Band 2)] 

This equation enhances the contrast between bare soil and other land cover types, making it 

particularly useful for soil exposure monitoring (Mandal et al., 2019). 

Applications of BSI 

Land Degradation and Desertification: BSI has been widely used to detect land degradation 

and desertification. It helps track soil erosion, sand encroachment, and vegetation loss in arid 

and semi-arid regions (Zhang et al., 2021). 

Agricultural Land Management: BSI is crucial in assessing soil conditions and evaluating 

land suitability for cultivation. Farmers and researchers use it to monitor soil degradation caused 

by overgrazing, deforestation, and unsustainable agricultural practices (Xie et al., 2018). 

Urban Expansion and Land Use Change: BSI is instrumental in mapping urban sprawl and 

distinguishing built-up areas from bare soil. It is often combined with machine learning 

algorithms to enhance urban planning and land-use classification (Roy et al., 2020). 

Comparison with Other Remote Sensing Indices 

BSI is often compared with indices such as NDVI (Normalized Difference Vegetation Index), 

SAVI (Soil-Adjusted Vegetation Index), and NDBI (Normalized Difference Built-up Index). 

Unlike NDVI, which is vegetation-focused, BSI highlights soil exposure, making it a more 

accurate tool for analyzing land degradation and soil surface conditions (Zhao et al., 2018). 

 Normalized Difference Moisture Index (NDMI) 

The Normalized Difference Moisture Index (NDMI) is a remote sensing-derived index used to 

assess vegetation moisture content, which plays a critical role in monitoring drought, forest 

health, and land degradation (Gao, 1996). NDMI is particularly effective in analyzing land 

degradation processes such as deforestation, soil erosion, and desertification (Xue & Su, 2017). 

The availability of high-resolution satellite data from Sentinel-2 has significantly enhanced 
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NDMI-based studies by providing improved spectral and temporal coverage (Van Leeuwen et 

al., 2020). 

NDMI Calculation and Methodology 

NDMI is derived from near-infrared (NIR) and shortwave infrared (SWIR) bands, making it 

sensitive to vegetation water content and soil moisture. The equation for NDMI is given as: 

NDMI = (NIR - SWIR) / (NIR + SWIR) For Sentinel-2 imagery, the specific bands used in 

NDMI calculation are: 

NIR (Band 8: 842 nm) 

SWIR (Band 11: 1610 nm) 

Role of NDMI in Land Degradation Assessment 

NDMI is widely used to monitor land degradation, particularly in regions affected by 

deforestation, overgrazing, and unsustainable agricultural practices. Since soil moisture is a key 

indicator of land degradation, NDMI effectively maps changes in vegetation water content, 

which can indicate stress due to degradation (Chen et al., 2021). 

Sentinel-2 for NDMI-Based Analysis 

The Sentinel-2 satellite, with its 10-20m spatial resolution, provides high-quality NDMI data 

for land degradation studies. Its frequent revisit time (5 days) allows near-real-time monitoring 

of vegetation and soil moisture dynamics (Drusch et al., 2012). 

Case Studies on NDMI and Land Degradation 

A study in the Sahel region used Sentinel-2 NDMI to analyze land degradation trends from 

2015 to 2022. The results showed a decline in NDMI values, indicating increasing soil dryness 

and vegetation stress (Dossa et al., 2023). 

In the Amazon rainforest, NDMI analysis has been used to track deforestation-induced soil 

moisture loss. A study found that regions experiencing tree loss showed a 20-30% reduction in 

NDMI values over 10 years (Silva et al., 2021). 

 Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) is a widely used remote sensing index 

for monitoring vegetation health, productivity, and land cover changes. Introduced by Rouse et 

al. (1973), NDVI utilizes the contrast between the red and near-infrared (NIR) spectral bands 

to measure vegetation vigor. The index has become an essential tool in agricultural monitoring, 

ecological assessments, and climate change studies, as it provides a reliable indication of 

vegetation stress and biomass productivity. 
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Historical Background and Development 

NDVI was first conceptualized in the early 1970s during the development of multispectral 

remote sensing techniques. Rouse et al. (1973) formulated NDVI to quantify vegetation cover 

using Landsat satellite imagery. Since then, the index has been extensively used in ecological 

and agricultural research. Technological advancements, such as the introduction of high-

resolution sensors on platforms like MODIS, Sentinel-2, and Landsat 8, have significantly 

enhanced NDVI applications (Pettorelli et al., 2005). 

NDVI Calculation and Variants 

NDVI is computed using the following equation: 

NDVI = (NIR - Red) / (NIR + Red) 

For Landsat 8: 

NDVI = (Band 5 - Band 4) / (Band 5 + Band 4) 

For Sentinel-2: 

NDVI = (Band 8 - Band 4) / (Band 8 + Band 4) 

Several NDVI modifications exist, such as the Enhanced Vegetation Index (EVI), which 

improves sensitivity to high biomass areas by reducing atmospheric effects (Huete et al., 2002). 

Applications of NDVI in Environmental and Agricultural Monitoring 

Vegetation Health and Drought Monitoring: NDVI is extensively used to assess vegetation 

health and drought conditions. Research by Tucker et al. (1985) demonstrated NDVI’s 

capability in detecting drought-induced vegetation stress. Modern applications include 

integrating NDVI with meteorological data to assess agricultural vulnerability to climate 

variability (Pettorelli et al., 2005). 

Land Use and Land Cover Change Detection: NDVI has played a crucial role in monitoring 

deforestation, urbanization, and land degradation. Hansen et al. (2013) used NDVI time-series 

data to analyze global forest loss, highlighting its utility in long-term ecological assessments. 

Agricultural Productivity and Crop Monitoring: NDVI-based remote sensing enables 

precision agriculture by monitoring crop health, estimating yield, and detecting pest 

infestations. Studies have demonstrated NDVI’s effectiveness in optimizing irrigation 

schedules and fertilizer application (Lobell et al., 2015). 
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Comparison with Other Remote Sensing Indices 

NDVI is often compared with alternative vegetation indices such as EVI, SAVI, and MSAVI. 

While NDVI is widely used for vegetation health monitoring, EVI provides better performance 

in dense vegetation areas by minimizing soil background effects (Huete et al., 2002). 

Case Studies on NDVI Applications 

Several studies have demonstrated NDVI’s utility in vegetation monitoring. For example, 

Pettorelli et al. (2005) analyzed NDVI trends to assess the impact of climate change on 

vegetation dynamics in the Sahel region. Similarly, NASA’s MODIS NDVI data has been 

extensively used to track global agricultural trends and ecosystem productivity. 

 Normalized Difference Water Index (NDWI) 

Water resources are vital for ecological balance, human consumption, and economic activities. 

Remote sensing has emerged as an essential tool in monitoring hydrological changes, enabling 

the detection of water bodies, seasonal variations, and the impact of anthropogenic activities 

(Gao, 1996). One of the most widely used indices for water body detection is the Normalized 

Difference Water Index (NDWI), first introduced by McFeeters (1996). The index enhances 

open water features in satellite imagery by leveraging spectral differences in water absorption 

and reflectance. 

Historical Background and Development 

NDWI was developed to distinguish water bodies from land using multispectral satellite 

imagery (McFeeters, 1996). It was originally designed for use with Landsat TM data, utilizing 

the Green and Near-Infrared (NIR) bands to enhance the water reflectance while minimizing 

vegetation influence. However, researchers soon identified limitations in NDWI's performance, 

particularly in urban environments where built-up areas often had similar spectral 

characteristics to water bodies (Xu, 2006). As a result, a modified version, the Modified 

Normalized Difference Water Index (MNDWI), was introduced by Xu (2006) to improve water 

detection in urban and turbid environments by replacing NIR with the Short-Wave Infrared 

(SWIR) band. 

NDWI Calculation and Variants 

NDWI is derived using the following equation: 

NDWI = (Green - NIR) / (Green + NIR) 

For Landsat 8: 

NDWI = (Band 3 - Band 5) / (Band 3 + Band 5) 
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For Sentinel-2: 

NDWI = (Band 3 - Band 8) / (Band 3 + Band 8) 

MNDWI, a variation of NDWI, replaces the NIR band with SWIR to improve water body 

detection in highly reflective environments: 

MNDWI = (Green - SWIR) / (Green + SWIR) 

For Landsat 8: 

MNDWI = (Band 3 - Band 6) / (Band 3 + Band 6) 

Applications of NDWI in Environmental Monitoring 

NDWI has been widely used for various hydrological and environmental studies. Key 

applications include: 

Water Body Detection and Monitoring: NDWI is extensively used to delineate water bodies, 

such as lakes, rivers, and reservoirs, by enhancing the contrast between water and surrounding 

land features (Gao, 1996). Research has shown that NDWI effectively maps surface water 

changes over time, aiding in hydrological studies and water resource management (McFeeters, 

2013). 

Flood Monitoring and Disaster Assessment: Flood events significantly alter water coverage, 

and NDWI has proven effective in rapidly assessing flood extent. Pekel et al. (2016) used 

NDWI-based time-series analysis to detect flooding patterns across multiple regions. Studies 

utilizing Sentinel-1 and Sentinel-2 data have combined NDWI with synthetic aperture radar 

(SAR) to improve flood mapping accuracy (Huang et al., 2018). 

Water Quality and Turbidity Analysis: Water quality assessment has become a critical 

application of NDWI, particularly when coupled with MNDWI and other spectral indices. 

Researchers have employed NDWI to monitor sedimentation in mining-affected rivers, where 

high turbidity impacts aquatic ecosystems (Chen et al., 2020). Further, integrating NDWI with 

the Chlorophyll-a Index has been useful for detecting algal blooms and assessing eutrophication 

levels in water bodies. 

Comparison with Other Remote Sensing Indices 

NDWI is often compared with other indices in remote sensing, including NDVI and BSI. NDVI 

primarily focuses on vegetation health, whereas NDWI enhances water detection (Ouma & 

Tateishi, 2006). In contrast, the Bare Soil Index (BSI) is used for identifying exposed soil, 

making it less effective in detecting water bodies. 
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Case Studies on NDWI Applications 

Several studies demonstrate NDWI’s effectiveness in water body detection. Pekel et al. (2016) 

mapped global surface water changes over 30 years using NDWI, revealing substantial shifts 

due to climate change and human activities. Additionally, NDWI has been applied in mining-

affected regions to assess water pollution levels and land degradation (Kumar et al., 2019). 

 Turbidity Index 

Turbidity is a key parameter in water quality assessment, representing the cloudiness or haziness 

of water caused by suspended particles (Brown & Johnson, 2019). High turbidity levels can 

negatively impact aquatic ecosystems, drinking water quality, and industrial applications. 

Remote sensing has emerged as a powerful tool for monitoring turbidity over large spatial and 

temporal scales (Gao et al., 2020). Turbidity results from natural sources such as sediment 

transport, organic matter, and algal growth, as well as anthropogenic activities like 

deforestation, mining, and wastewater discharge (Smith et al., 2020). It affects light penetration 

in water bodies, impacting photosynthetic activity and aquatic habitats (Brown & Johnson, 

2019). High turbidity can also harbor pathogens, posing health risks (EPA, 2021). Regulatory 

standards, such as those set by the U.S. Environmental Protection Agency (EPA), help establish 

acceptable turbidity levels for various water uses. 

Concept and Development Turbidity Index (TI) is a mathematical representation of water clarity 

based on spectral reflectance characteristics (Lee et al., 2018). It is commonly derived using 

satellite data, which capture variations in water optical properties (Martinez et al., 2022). 

Different TI models  

Single-Band Methods: Utilizing specific spectral bands (e.g., red or near-infrared) to estimate 

turbidity levels  

Multi-Band Indices: Combining multiple spectral bands to enhance accuracy and reduce 

atmospheric interference  

Remote Sensing Methods for Turbidity Assessment  

Remote sensing provides cost-effective and frequent monitoring of turbidity over large areas. 

Optical sensors on satellites such as Landsat, Sentinel-2, and MODIS have been widely used 

for turbidity assessment (Wang & Li, 2017). Key aspects include:  

Spectral Reflectance Properties: Turbidity affects the absorption and scattering of light, 

influencing satellite-derived measurements (Zhang & Chen, 2023). 
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Empirical vs. Analytical Models: Empirical models use field-measured turbidity data for 

calibration, while analytical models derive turbidity from inherent optical properties (Clark et 

al., 2021). 

Cloud and Atmospheric Correction Techniques: Addressing the impact of atmospheric 

conditions on satellite-based turbidity retrievals (Nguyen et al., 2019). 

Comparative Analysis of Turbidity Indices 

Different turbidity indices have been developed based on various sensors and analytical 

techniques. For example: 

Landsat-Based Indices: Moderate spatial resolution (30m) suitable for large-scale monitoring 

but limited by temporal resolution (16-day revisit time) (NASA, 2022). 

Sentinel-2-Based Indices: Higher spatial (10m) and temporal (5-day) resolution, improving 

turbidity detection in smaller water bodies (Clark et al., 2021). 

MODIS-Based Indices: High temporal resolution (daily) but lower spatial resolution (250–

500m), useful for large-scale ocean and river monitoring (Miller et al., 2021). 

Applications of Turbidity Index in Environmental 

Studies Turbidity indices are used in various environmental applications: 

Water Quality Monitoring: Assessing pollution levels in lakes, rivers, and coastal zones 

(Jackson et al., 2020). 

Impact of Land Use Changes: Understanding how deforestation and urbanization influence 

sediment transport and water clarity (Harris et al., 2018). 

Climate Change Studies: Analyzing long-term trends in turbidity levels due to changes in 

precipitation and temperature patterns (Thompson & White, 2023). 

 Suspended Sediment Concentration (SSC) 

Suspended Sediment Concentration (SSC) is a crucial parameter in hydrology and 

environmental science, representing the concentration of fine-grained particles suspended in 

water bodies. These sediments originate from soil erosion, urban runoff, and industrial 

discharges, significantly impacting water quality, aquatic habitats, and reservoir capacities 

(Horowitz, 2008). Accurate monitoring of SSC is essential for effective water resource 

management and environmental protection. Traditional in-situ measurement methods, while 

accurate, are often labor-intensive and spatially limited. Remote sensing technologies have 

emerged as efficient alternatives, offering extensive spatial coverage and frequent temporal 

observations (Miller & McKee, 2004).  
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SSC refers to the mass of sediment particles suspended per unit volume of water, typically 

expressed in milligrams per liter (mg/L). These particles include clay, silt, and fine sand, which 

can originate from natural processes like soil erosion and anthropogenic activities such as 

deforestation and urbanization (Walling, 2006). Elevated SSC levels can reduce light 

penetration, affecting photosynthesis in aquatic plants and altering thermal stratification in 

water bodies (Bilotta & Brazier, 2008). Additionally, high sediment loads can transport 

nutrients and contaminants, leading to eutrophication and degradation of water quality 

(Brakenridge et al., 2020). 

Traditional Measurement Techniques 

Conventional methods for measuring SSC involve collecting water samples and analyzing them 

in laboratories to determine sediment concentrations. Techniques such as filtration, gravimetric 

analysis, and optical turbidity measurements have been widely used (Gray et al., 2000). While 

these methods provide accurate point measurements, they are limited by their spatial and 

temporal coverage. Deploying field campaigns to collect samples across large or remote areas 

can be resource-intensive and may not capture the dynamic variability of SSC, especially during 

episodic events like storms or floods (Liu et al., 2018). 

Remote Sensing Approaches for SSC Estimation 

Remote sensing offers a powerful tool for monitoring SSC over extensive areas with high 

temporal frequency. Satellite sensors detect reflected solar radiation from water surfaces, 

capturing variations in spectral signatures influenced by suspended sediments. As sediment 

levels increase, water reflectance typically rises in the red and near-infrared bands due to 

scattering effects (Binding et al., 2010). 

Satellite Sensors Utilized in SSC Monitoring 

Several satellite sensors have been employed to estimate SSC: 

Landsat Series: The Landsat program has provided multispectral imagery since the 1970s, with 

sensors like the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and 

Operational Land Imager (OLI). These sensors offer moderate spatial resolution (30 meters) 

and a 16-day revisit cycle, making them suitable for monitoring large water bodies and detecting 

long-term sediment trends (Gao, 2020). 

Sentinel-2: Launched by the European Space Agency, Sentinel-2 satellites provide high-

resolution multispectral imagery with a 10 to 20-meter spatial resolution and a 5-day revisit 
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period. The increased temporal frequency and finer spatial resolution enhance the capability to 

monitor SSC in smaller or dynamic water bodies (Vanhellemont & Ruddick, 2015). 

MODIS (Moderate Resolution Imaging Spectroradiometer): MODIS sensors aboard NASA's 

Terra and Aqua satellites provide daily global coverage with moderate spatial resolution (250 

to 500 meters). Despite the coarser resolution, MODIS data are valuable for monitoring large-

scale sediment dynamics and capturing transient events like floods or storms (Mertes et al., 

1993). 

Empirical and Analytical Models for SSC Retrieval 

Retrieving SSC from remote sensing data involves developing models that relate spectral 

reflectance to sediment concentrations. Empirical models establish statistical relationships 

between in-situ SSC measurements and corresponding satellite-derived reflectance values 

(Nechad et al., 2010). Analytical or semi-analytical models incorporate the inherent optical 

properties of water and sediments to simulate the interaction of light with suspended particles 

(Chen et al., 2014). Advancements in machine learning techniques have further enhanced SSC 

retrieval by enabling the development of algorithms that can capture nonlinear relationships and 

improve prediction accuracy (Huang et al., 2021). 

Applications of SSC Monitoring 

Accurate SSC monitoring has diverse applications in environmental management and research: 

Water Quality Assessment: High sediment concentrations can degrade water quality, affecting 

drinking water supplies and aquatic habitats (Zhang et al., 2019). 

Erosion and Sediment Transport Studies: Understanding sediment dynamics is crucial for 

managing soil erosion and sediment deposition in rivers and reservoirs (Vercruysse et al., 2017). 

Coastal and Marine Studies: SSC monitoring supports the study of coastal erosion, estuarine 

sediment dynamics, and the impact of human activities on marine ecosystems (Wu et al., 2020). 

 Land Use/Land Cover (LULC) Evaluation  

With the availability of remote sensing products, it is possible to study the changes on land with 

changing times. Several studies have been carried out using different methods, and satellites to 

evaluate land changes around the world. 

Aguro, 1996 used remote sensing and GIS to evaluate Land Degradation and Land Management 

in Ghana where he demonstrates how these technologies have been successfully used in Ghana 

to assess degraded lands within the Nation's Forest Reserves. In his research, Landsat TM bands 

453 (Red, Green,Blue) were combined with digital maps to separate forest from non-forest. 
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Degraded portions of the forest were then delineated and their areas digitally computed. These 

areas were then successfully validated through ground checks to provide data for reforestation 

program. 

Lobo et al., 2018 in their research in Mapping Mining Areas in the Brazilian Amazon Using 

MSI/Sentinel-2 Imagery noticed that mining plays an important role for the economy of the 

Amazon, yet little is known about its attributes such as area, type, scale, and current status as 

well as socio/environmental impacts. Therefore, they propose a low time-consuming and high 

detection accuracy method for mapping the mining areas. This method involved the. Detection 

of the mining areas conducted in five main steps which are; MSI (Multispectral 

Instrument)/Sentinel-2A image selection; definition of land-use classes and training samples; 

supervised classification, vector editing for quality control; and validation with high-resolution 

Rapid Eye images. The results of using this method gave the total areas occupied by mining 

areas. A look at the recent events of mining impacts in this area, the large extension of mining 

areas detected raised a concern regarding its socio-environmental impacts for the Amazonian 

ecosystems and for local communities. 

Kiran et al., 2018 in their research on Land Use/Land Cover Dynamics During 2001 And 2021 

Using Google Earth Engine and GIS in Ramagundam Coal Mining Area, A Part of Pranhita 

Godavari Valley, Southern India, used Landsat 5 and Landsat 8 multispectral satellite data from 

2001 to 2021 with <5% cloud cover was used to classify LULC classes. Using. Google Earth 

Engine through supervised classification And Regression Tree (CART) classifier. Their 

research showed that mining area had increased to 298% (from 15.20 km2to 60.50 km2) from 

2001 to 2021 and significantly reduces other classes. And as such concluded that these results 

could be useful to the coal industry/company in carefully monitoring the effects of mining. The 

studied further recommended the use of such data as an aid in policy making and environmental 

analysis in understanding the nature of change in LULC features in the area.  

Pei et al., 2017 used Object-based image analysis to map land use in the Panxie coal mining 

area, East China, where long-term underground coal mines have been exploited since the 1980s. 

A rule-based classification approach was developed for a Pleiades image to identify the desired 

land use classes, and the same rule-based classification strategies, the threshold values were 

modified slightly, and applied to the Landsat series images. They succeeded to produce an 

overall accuracy of between 80 and 94%. The results of this study provided a valuable basis for 

sustainable land management and environmental planning in the Panxie coal mining area. 
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Singh et al, research on the use of Landsat satellite images (MSS, TM, and ETM+) carryout 

Land use/land cover change detection analysis of Dhanbad district, in India. The study 

evaluated the LU/LC changes due to exploitation of coal in Dhanbad district of India during the 

period of 1987 to 2017 by means of supervised classification. The LU/LC change indicated 

that; for 30 years the percentage share of dense forest, open scrub, agricultural fallow, river, 

water body and mining was at a decrease. Land use changes were due to harvesting of forest 

for fuel, shelter and agriculture, construction of residential houses in fallow land, urbanization 

and sand removal for construction material. An increase in low dense forest, agricultural land, 

barren land, sand and built-up area were due to shift of land use from forest to open scrub, 

agricultural fields and barren lands, new settlement by utilizing sands from river banks making 

the river stretch wider, open mine pits converted into water bodies in the district. This research 

further confirms to the fact that man and his activity in most communities is the major cause of 

land degradation. With these findings, they concluded that there is a need of enhancement of 

forest area due to dwindling of life support system (vegetation) for biological organisms, a need 

for the mine managers and local inhabitants to pay attention to forest protection and to reduce 

the air and water pollution in the coal capital of India. 

Nodem et al., 2018 carried out a study aimed at assessing the impacts of mining on the 

environment using a combination of spatial analysis, questionnaire administration and 

Leopold’s grid of impact assessment. The impacts of mining on physical environment included 

air pollution by emission of dusts and fumes from engines, soil and subsoil degradation by 

earthworks and release of wastewater containing chemicals from companies. Destruction of 

habitats; decrease in quantity of forested area since the arrival of mining companies were 

observed. Aquatic fauna was seen to be threatened by high turbidity and death of fishes. The 

research recommended that Government bodies must ensure permanent monitoring and 

environmental audit to check the compliance of mining companies and their activities with 

regulations. That the Protection of environment and people in the area required some 

management strategies which included: control and monitoring of deforestation and its 

evolution; a review of the law or current mining code should be performed. The operator must 

develop and submit an EIA and an Environmental and Social Management Plan to ensure the 

protection of the environment during and after the gold mining. For the excavations, holes, land 

degraded, and sites affected by the activities; proper measures are needed for their maintenance 

and restoration. Mining activities in the area require the supervision of an interdisciplinary team 
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where the role and actions of different stakeholders are clearly stated. The state must ensure 

permanent monitoring, compliance and control of mining by a regular environmental audit of 

each mining company. Such a study shows the correlation between questionnaires, and remote 

sensing for effective results. In the study of land use and land cover analysis 

Gadal et al, 2021.research on a new soil degradation method analysis by Sentinel 2 images 

combining spectral indices and statistics analysis: application to the Cameroonian shores of 

Lake Chad and its hinterland paper where it aimed at modeling the soil degradation risk along 

the Cameroonian shores of Lake Chad. The processing was based on a statistical analysis of 

spectral indices of sentinel 2A satellite images. A total of four vegetation indices such as the 

Greenness Index and Disease water stress index and nine soil indices such as moisture, 

brightness, or organic matter content are computed and combined to characterize vegetation 

cover and bare soil state, respectively. All these indices are aggregated to produce one image 

(independent variable) and then regressed by individual indices (dependent variable) to retrieve 

correlation and determination coefficients. Principal Component Analysis and factorial analysis 

are applied to all spectral indices to summarize information, obtain factorial coordinates, and 

detect positive/negative correlation. The first factor contains soil information, whereas the 

second factor focuses on vegetation information. The final equation of the model is obtained by 

weighting each index with both its coefficient of determination and factorials coordinates. This 

result generated figures cartography of five classes of soils potentially exposed to the risk of 

soil degradation. 

Temgoua et al., 2018 in their study carried out in Ajei upland watershed community forest in 

the North West Region of Cameroon analyzed the spatial and temporal dynamics of land cover 

and land use from 1988 to 2018 where they identified and characterized the agents, drivers and 

pressures of change. The study involved the use of Landsat satellite images, field survey, 

interview and a focus on group discussion methods to identify the activities carried out by the 

local population and to determine agents, drivers and pressures of land use and land cover 

change. By using landsat images they were able to discover the four main land cover of the Ajei 

community forest; dense vegetation, sparse or degraded vegetation, savanna and bare soil. From 

the field surveys, and group discussion methods, the lost in vegetation resulted from the actions 

of farmers, cattle grazers and wood extractors who through farming, grazing and lumbering 

activities pressurize and converted the dense forest cover. Economic motives notably the need 

to increase household income from a frequent demand for farm and wood products in nearby 
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markets represent the drivers of forest cover change. At the end of this research, the research 

recommended that, controlling grazing activities notably in the dry season to check out the use 

of fires, community sensitization especially among cattle headmen on the importance of the 

community forest, reforestation activities through natural regeneration or tree planting are 

needed in the forest. 

Kamga et al., 2017 carried out research in the eastern region of Cameroon with the aim of 

monitoring Land Use and Land Cover (LULC) changes between 1987 and 2017 within Bétaré-

Oya, Ngoura and Batouri Districts which are witnessing extensive gold mining activities, 

assessing the dynamics between LULC types and understanding the anthropogenic impact of 

gold mining activities during this period. A series of Landsat images acquired in 1987, 2000, 

and 2016/2017 were used to examine LULC change trajectories at per-pixel scale with the post-

classification change detection techniques based on the matrix of changes. A supervised 

classification by the maximum likelihood algorithm composed of five classes – Bare land, 

Settlements, Water bodies, Vegetation and Mine activities, was designed for this study, in order 

to classify Landsat images into thematic maps. This research revealed spatio-temporal change 

patterns, various composition and rates among the three study areas. Also, it shows the strong 

appearance and emergence of mining activities between 2000 and 2017 are coupled with 

increase in settlement surfaces and major changes in environment in the study areas. The LULC 

change analysis over time for the study areas have provide the current change trends. This study 

stresses the usefulness of Landsat TM/ETM+ and Landsat Data Continuity Mission (LDCM) 

data and highlights the data processing methods for long-term monitoring of artisanal mining 

activities impacts on the environment. The findings gathered from this research should be used 

to influence policy, legislation and decision-making in the mining and environmental sector. 

2.8 Rehabilitation 

This refers to the process restoring degraded or damaged ecosystems to functional state, 

emphasizing the recovery of ecosystem processes and services, rather than necessarily restoring 

the original species composition. 

2.8.1 Principles of rehabilitation 

Acknowledge the importance of ecosystem integrity: 

Ecological rehabilitation seeks to restore the structure, function and processes of ecosystems, 

aiming to enhance biodiversity and resilience. The focus is not necessarily on recreating an 
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exact replica of the original ecosystem, but rather on facilitating its recovery and ensuring its 

capacity to provide ecological services (Gann et al., 2019). 

Tailor restoration to local contexts: 

Restoration efforts should be tailored to specific environmental conditions, including the unique 

characteristics of the degraded ecosystem and its surrounding landscape. This means 

considering factors such as climate, soil types, hydrology and native species to ensure the 

success of restoration efforts (Gann et al., 2019). 

Prioritize ecological goals: 

Restoring activities should be guided by ecological goals, with a focus on restoring natural 

processes and functions, such as water flow, nutrient cycling and habitat provision (Gann et al., 

2019). This may include for example, promoting the recovery of native plant and animal 

communities, reducing pollution and restoring soil wealth (Maanavilja et al., 2014). 

Engage stakeholders and promote participation: 

Successful ecological rehabilitation requires the participation of local communities, land 

managers, scientists, and policy makers (Gann et al., 2019). Engaging stakeholders in planning 

and implementation can ensure that restoration efforts are relevant, sustainable and culturally 

appropriate (eden-plus.org).  

Emphasize long term sustainability: 

Restoration projects should be design to be sustainable in the long term, with a focus on self-

sustaining ecosystems that can withstand environmental changes. This may involve reducing 

human impact on the ecosystem, promoting biodiversity, and ensuring that restoration activities 

are managed effectively (Maanavilja et al., 2014). 

Monitor and assess restoration outcomes:  

Regular monitoring and assessment are essential to track the progress of restoration projects 

and make adjustments as needed. This can involve measuring changes in biodiversity, 

ecosystem structure and function and water quality (Trinidad et al., 2023). 

2.8.2 Ecosystem Services 

Ecosystem services are the direct and indirect contributions of ecosystems to human well-being. 

They are the benefits that people obtain from nature. Ecosystem services are typically 

categorized into four main types: 

 Provision services: These are the tangible goods that humans obtain from ecosystems, 

such as food, water, timber and raw materials. 
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 Regulatory services: These are the benefits derived from the natural processes that 

regulate ecosystem functions, such as climate regulation, flood control and disease 

regulation. 

 Supporting services: These are the fundamental processes that sustain other ecosystem 

services, such as nutrient cycling, soil formation and pollination. 

 Cultural services: These are the non-material benefits that ecosystems provide to 

human societies, such as recreation, tourism, aesthetic appreciation, and spiritual or 

cultural activities. 

Restoration of ecosystem services 

Ecological rehabilitation efforts often focus on restoring degraded ecosystems to enhance their 

capacity to provide ecosystem services. Key strategies include: 

 Revegetation and reforestation: Restoring vegetation cover helps to improve soil 

stability, regulate water flow and sequester carbon. It also provides habitat for wildlife 

and enhances aesthetic values (Massoukou et al., 2023). 

 Wetland Restoration: Restoring wetlands improve water purification, flood control 

and habitat provision. Wetlands are highly productive ecosystems that provide 

numerous services. 

 Soil remediation: Restoring soil health enhances nutrient cycling, water infiltration and 

plant growth. This is particularly important in mining-affected areas with contaminated 

soils. 

 Habitat creation: Creating and restoring habitats for specific species or communities 

enhances biodiversity and ecosystem resilience. This can include creating artificial 

reefs, building wildlife corridors, and restoring degraded forests. 

 Restoring natural hydrology: Restoring the natural water flow of an area, greatly 

increases the ability of the local ecosystem to heal itself. 

2.8.3 Remote sensing applications in mining Rehabilitation 

Remote sensing plays a crucial role in both characterizing mining sites before rehabilitation and 

monitoring the progress of restoration efforts. By providing a synoptic view and enabling 

repeated observations, it offers valuable insights for effective rehabilitation planning and 

execution. 
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1. Baseline site characterization 

Land cover mapping: Remote sensing allows for the creation of detailed land cover maps, 

which are essential for understanding the pre-mining and post mining landscape. This involves 

identifying areas of bare ground, vegetation, water bodies and infrastructure. High resolution 

imagery can be used to map detailed features, while moderate-resolution imagery can cover 

larger area (McKenna et al.,2020). 

Topographic analysis: Digital Elevation Models (DEMs) derived from remote sensing data 

(LiDAR, satellite stereo imagery) are used to analyze topography, identify erosion-prone areas, 

and plan landform construction. DEMs are also used to monitor changes in landform stability 

during rehabilitation (Sodnomdarjaa et al.,2023). 

Soil Characterization: Hyperspectral remote sensing can be used to assess soil properties, such 

as organic matter content, moisture, and heavy metal contamination. This information is crucial 

for planning soil remediation and revegetation strategies (Lau et al.,2008). 

2. Monitoring rehabilitation progress: 

Vegetation recovery monitoring: Vegetation indices (NDVI, EVI) are used to track the 

progress of revegetation efforts, assess vegetation health, and identify areas where recovery is 

lagging. Time series analysis of satellite imagery allows for the monitoring of long-term trends 

in vegetation recovery (McKenna, 2021). 

Water quality Monitoring: Remote sensing is used to monitor changes in water quality during 

rehabilitation, ensuring that remediation efforts are effective (Moliere et al., 2012). 

Landform stability monitoring: Repeated DEMs are used to monitor changes in landform 

stability, detect erosion, and assess the effectiveness of erosion control measures (Zhao et al., 

2016). 

GIS-Based multi-criteria evaluation for land suitability assessment of post mining areas in the 

Antaibao open-pit coal mine” was explored by Bagdanaviciute and Valiunas., (2012) to assess 

and map land suitability for ecological restoration in a post-mining area using a GIS based 

multi-criteria evaluation (MCA) approach, and to provide spatial guidance for rehabilitation 

planning. The researchers collected spatial data on topography (DEM), soil properties, and land 

cover (Landsat); performed a weighted overlay analysis in GIS to come out with map zones of 

high, moderate and low. This resulted in the generation of a land suitability map showing spatial 

variations in revegetation potential and provided recommendations for rehabilitation strategies 

based on suitability maps. 
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Hyperspectral remote sensing for vegetation monitoring and species identification in mine 

rehabilitation” by Plaza et al., (2016) to review and demonstrate the applications of 

hyperspectral remote sensing for vegetation monitoring and specie identification in mine 

rehabilitation, and to show this technology can improve rehabilitation. They reviewed and 

discussed the use of hyperspectral imaging to capture detailed spectral signatures of vegetation 

and soils. Their results showed how to map the spatial distribution of different plant species in 

a rehabilitated mining area. 

2.8.4 Case studies of successful mining-affected rehabilitation projects 

Successful rehabilitation of mining-affected areas requires a multifaceted approach, as 

demonstrated by several global case studies. The Sudbury Regreening Program in Canada 

exemplifies the importance of sustained, long-term commitment and community involvement 

in ecological restoration. After decades of severe environmental damage from nickel and copper 

mining, Sudbury achieved significant vegetation recovery through liming acidic soils, planting 

native species, and reducing industrial emissions. This highlights the necessity of a scientific, 

adaptive management strategy in rehabilitation (Monet and McCaffrey2025). 

Conversely, the Zollverein Coal Mine Industrial Complex in Germany showcases successful 

repurposing and revitalization. Transforming a former coal mine into a UNESCO World 

Heritage site, cultural hub, and recreational space demonstrates that rehabilitation can yield 

significant social and economic benefits while preserving industrial heritage. This case 

underscores the potential for innovative land-use strategies post-mining. 

The Beenup Titanium Mine in Australia further emphasizes the importance of ecological 

restoration and community engagement. By focusing on creating permanent wetlands with 

native vegetation and fostering collaboration with scientific experts, the Beenup project 

achieved successful ecological rehabilitation. This exemplifies the importance of tailored 

rehabilitation strategies that focus on restoring specific ecosystem functions (Norrish et al., 

2019). 

Across these cases, several common factors emerge as critical for successful rehabilitation: 

early integration of rehabilitation planning into mining operations, active community 

participation, rigorous scientific monitoring and adaptive management, and a long-term 

commitment to ecological restoration. Furthermore, the use of remote sensing and GIS systems 

can provide valuable tools for monitoring and planning rehabilitation efforts, ensuring that 

restoration goals are met effectively. These case studies provide valuable insights for the 
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rehabilitation of alluvial gold mining-affected areas in Betaré-Oya, emphasizing the need for a 

comprehensive and adaptive approach." 

Doumo et al., (2022) conducted a study assessing metallic contamination in soils and sediments 

with Betare-Oya gold artisanal mine district. Their analysis revealed significant levels of 

metallic contamination, indicating substantial environmental impact from mining activities. 

This study highlights the direct correlation between artisanal mining and increased heavy metal 

pollution in the region 

Research carried out on mine waste and heavy metal pollution in Betare-Oya mining area 

(Eastern Cameroon) demonstrates the severe environmental consequences of mining activities. 

This research focuses on the levels of heavy metal pollution that are directly linked to mine 

waste that is produced by the artisanal gold mining. 

A study focusing on the assessment of surface water quality in Betare-Oya gold mining area 

provides valuable insights into the hydrological impacts of mining. The research shows the 

degradation of surface water quality due to the mining operations. 

Studies utilizing remote sensing techniques have documented significant land cover changes in 

Betare-Oya region, primarily driven by artisanal gold mining. Analysis of satellite imagery 

shows a marked increase. 

2.9 Research gap 

This literature review has highlighted the significant environmental and socio-economic 

impacts of alluvial gold mining in the Betaré-Oya region, and the potential of remote sensing 

for spatiotemporal analysis and rehabilitation. However, one significant gap lies in the 

assessment of rehabilitation effectiveness. While many studies document the environmental 

impact of alluvial gold mining, a lack of comprehensive research exists on the ecological and 

socio-economic sustainability of rehabilitation practices. This study focuses on monitoring and 

evaluation to understand the true impact of rehabilitation efforts, while proposing rehabilitation 

measures for enhancing sustainable mining practices in Betaré-Oya mining district. 
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CHAPTER 3 

MATERIALS AND METHOD 

3.1 Materials 

This section outlines the materials used in conducting the research 

3.1.1 Field Observation Materials 

Field observations involved capturing images of active and abandoned mine sites, mapping 

affected areas using GPS, and conducting interviews with local communities. 

Table 3.1: Field observation Materials 

Material Function 

Garmin GPSMAP 64s Used for mapping active and abandoned mine 

sites. 

Smartphone Captured images of land degradation, active 

mining zones, and abandoned sites. 

Field Notebook Recorded observations, GPS coordinates, 

and interview responses. 

Semi-structured Interviews Collected qualitative data on mining 

activities, environmental impacts, and 

community perspectives. 

3.1.2 Remote Sensing Data 

Satellite imagery was used to analyze land use changes, vegetation health, land degradation, 

and water qualitty caused by mining activities. 

Table 3.2: Remote sensing Data 

Satellite Data Function 

Sentinel-2 (10m resolution, MSI sensor) Used for NDVI (vegetation health), NDWI 

(water body assessment), BSI (bare soil 

analysis), NDMI (moisture index), TI 

(Turbidity index), SSC (Suspended 

Sediment Concentration) and LULC 

classification. 

3.1.3. Software Used for Data Processing 

The following software tools were used for remote sensing analysis, geospatial mapping, and 

classification. 
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Table 3.3: Software used for Image Processing and Statistical analysis (Appendix A) 

Software Function 

SNAP Tool (Sentinel Application Platform) Pre-processing of Sentinel-2 images, 

including radiometric and atmospheric 

corrections. 

Google Earth Pro Used for high-resolution image validation 

and manual inspection of mine site changes. 

ArcGIS Used for spatial analysis, map creation, GPS 

data integration, and land use classification. 

ENVI Used for cloud-based processing of satellite 

imagery, time-series analysis, and spectral 

index computation. 

MS Excel Used for quantitative data analysis after 

performing spatial analysis 

3.1.4 Safety and Ethical Consideration Materials 

The research adhered to ethical and safety guidelines to ensure responsible environmental 

monitoring and data collection. 

Table 3.4: Safety Materials 

Material Function 

Safety  boat Protected the researcher while navigating 

rough terrain. 

Face Mask Minimized exposure to dust and 

contaminants in mining-affected areas. 

First Aid Kit Ensured quick response to potential injuries 

during fieldwork. 
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Figure 3.1: Garmin GPSMAP 64s 

 

 

Figure 3.2: Field Notebook 

 

 

Figure 3.3: Google Pixel 6 smartphone with high resolution camera 
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Figure 3.4: Safety boat 

3.2 Methods 

This study adopts a mixed-method approach combining remote sensing, GIS analysis, and field-

based assessments to analyze spatiotemporal environmental changes in Betare-Oya’s alluvial 

gold mining-affected areas. The study integrates quantitative methods (satellite image analysis, 

spectral indices computation, and water quality assessment) and qualitative methods (field basic 

assessment and expert consultations). 

3.2.1 Field-based preliminary evaluation and satellite imagery for assessing land 

degradation 

1. Field-based and Google Earth Pro Evaluation 

A field visit was conducted between January and March 2025 to assess the extent of 

environmental degradation caused by alluvial gold mining. The assessment focused on active 

mining areas, abandoned mine sites, and general land degradation patterns. During the field 

visit, active and abandoned mine sites were identified and documented. Key observations 

included: 

 Identification of active artisanal and semi-mechanized mining operations. 

 Assessment of land degradation, deforestation, and soil erosion in affected areas. 

 Visual examination of water bodies for signs of sedimentation and pollution. 

 Inspection of abandoned mine sites to determine the extent of environmental impact. 

A Garmin GPSMAP 64s was used to record the geographic coordinates of mining sites. GPS 

data collection was essential for spatial mapping and integration with satellite imagery. The 

collected data included: 

 Locations of active mining pits and excavated areas. 
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 Coordinates of abandoned mine sites. 

 Mapping of areas with visible land degradation and deforestation. 

A Google pixel 6 smartphone with high resolution camera was used to capture photographic 

evidence of mining activities, abandoned sites, and environmental degradation. These images 

were used for validation of remote sensing analysis. 

Semi-structured interviews were conducted with local residents, miners, and community leaders 

to gather qualitative information on mining activities and their environmental impacts. The 

discussions covered: 

 Changes in land use and environmental conditions over time. 

 Perceptions of the impact of mining on water quality and vegetation. 

 Community perspectives on abandoned mine sites and possible rehabilitation strategies. 

To supplement field observations, Google Earth Pro was used to observed high-resolution 

satellite images of selected mining-affected areas for the year 2023. The imagery provided a 

detailed view of abandoned mine sites and land degradation. The selection of 2023 was to 

evaluate rehabilitation efforts with recent field observation. 

2. Remote Sensing Satellite Imagery Evaluation 

A. Bare Soil Index 

This study employs remote sensing techniques, specifically the Bare Soil Index (BSI), to 

analyze the spatiotemporal changes in bare soil extent within alluvial gold mining-affected areas 

in the Betaré-Oya region of Cameroon. Sentinel-2 satellite imagery from 2021, 2023, and 2024 

were processed to quantify and map bare soil areas, providing insights into degree of land 

degradation. The workflow involves image acquisition, preprocessing using SNAP (Sentinel 

Application Platform), BSI calculation, and spatial analysis using ArcGIS 10.8. 

Data Acquisition 

Sentinel-2 Level-2 (surface reflectance) imagery were acquired for the Betaré-Oya region for 

the years 2021, 2023, and 2024. The selection of imagery prioritize dates within the dry season 

(November- March) to minimize cloud cover and vegetation influence on the BSI calculation. 

The images were downloaded from the Copernicus Open Dataspace System (formerly Sentinels 

Scientific Data Hub). 

Image Selection Criteria: 

 Images with less than 10% cloud cover over the study area were preferred. 
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 The Level-2 product provides atmospherically corrected surface reflectance values, 

reducing the need for additional atmospheric correction procedures. 

 The imagery must cover the entire Betaré-Oya study area. 

Table 3.5: Characteristics of downloaded Sentinel images 

Year Satellite Date of image Time  Phonological 

cycle 

2021 Sentinel-2 Level 2 09/12/2021 09:22:59 Dry Season 

2023 Sentinel-2 Level 2 14/12/2023 09:24:01 Dry Season 

2024 Sentinel-2 Level 2 23/12/2024 09:23:19 Dry Season 

Preprocessing using SNAP 

SNAP (Sentinel Application Platform), developed by the European Space Agency (ESA) was 

used for preprocessing the Sentinel-2 imagery. SNAP provides a comprehensive environment 

for processing Sentinel data. The following preprocessing steps were performed within SNAP: 

 The downloaded Sentinel-2 Level-2A granules were imported into SNAP. 

 A subset operation was performed to extract the area of interest (Betaré-Oya) in order 

to reduce processing time and storage requirements. 

 While Level-2A data is typically already coregistered, band resampling to a common 

spatial resolution was performed using the nearest neighbor method. 

 Although the Level-2A data is atmospherically corrected, it may still contain clouds or 

cloud shadows. The quality information associated with the data will be used to generate 

a cloud mask to remove these areas from the analysis. The Sen2Cor algorithm embedded 

in SNAP was utilized for this purpose. Pixels identified as cloud or cloud shadow were 

masked out by setting their values to "NoData." 

 Although Level-2A data is geometrically corrected, a visual inspection was performed 

to ensure accurate georeferencing.  

 The preprocessed imagery, with cloud masking and resampling applied, were exported 

from SNAP in a format compatible with ArcGIS 10.8 (GeoTIFF). 

Bare Soil Index (BSI) Calculation 

The BSI is calculated using the following formula, which utilizes the red, blue, shortwave 

infrared (SWIR1), and near-infrared (NIR) bands of the Sentinel-2 imagery: 



 

 

 

60 

 

BSI = ((SWIR1 + Red) - (NIR + Blue)) / ((SWIR1 + Red) + (NIR + Blue)) 

Where: 

SWIR1: Shortwave Infrared 1 (Sentinel-2 Band 11) 

Red band (Sentinel-2 Band 4) 

NIR: Near-Infrared band (Sentinel-2 Band 8) 

Blue: Blue band (Sentinel-2 Band 2) 

The BSI was calculated using the Raster Calculator tool in ArcGIS 10.8. The band designations 

were carefully matched to the corresponding Sentinel-2 bands in the preprocessed imagery. BSI 

values range from -1 to +1. Higher BSI values typically indicate a greater proportion of bare 

soil. 

Spatial Analysis and Mapping in ArcGIS 10.8: 

The BSI values were classified into different categories of bare soil using a supervised 

(maximum likelihood classification) techniques. Ground truth data (collected through field 

surveys and/or high-resolution imagery interpretation) were used to train the supervised 

classification algorithm and validate the accuracy of the classification approach. The categories 

included: 

 Bare Soil (actively mined areas or abandoned mine site) 

 Dry grass (disturbed areas, partially revegetated areas) 

 Sparse Vegetation (naturally bare areas, areas with minimal mining impact) 

 Dense Vegetation  

The accuracy of the classification was assessed using Kappa coefficient. Ground truth data were 

used as reference for accuracy assessment. 

B. Normalized Difference Moisture Index 

The Normalized Difference Moisture Index (NDMI) will be utilized as a proxy for vegetation 

moisture, which is a crucial indicator of land degradation and ecosystem disturbance in areas 

impacted by mining activities. Sentinel-2 satellite imagery from the years 2021, 2023, and 2024 

will be processed and analyzed using SNAP (Sentinel Application Platform) and ArcGIS 10.8 

to quantify and map changes in vegetation moisture content. This information will be used to 

assess the degree of environmental impact of alluvial gold mining in the study area in a time 

series approach. The NDMI analysis will complement the Bare Soil Index (BSI) analysis to 

provide a comprehensive understanding of land cover changes in the study area. 
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Data Acquisition 

Sentinel-2 Level-2A (surface reflectance) imagery were acquired for the Betaré-Oya region for 

the years 2021, 2023, and 2024 (images have same characteristics as on Table 3.5). These years 

are selected to capture a baseline condition, an intermediate period, and a later stage of potential 

environmental change. The Sentinel-2 mission provides high-resolution multispectral imagery 

with a revisit time that is suitable for monitoring land cover dynamics. The Level-2A product 

provides atmospherically corrected surface reflectance values, which are essential for accurate 

NDMI calculation. 

Preprocessing using SNAP 

The downloaded Sentinel-2 Level-2A granules were imported into SNAP using the dedicated 

data import tool. 

A subset operation was performed to extract the area of interest (Betaré-Oya region) from the 

full Sentinel-2 scene.  

Band resampling is necessary to align all bands to a common spatial resolution. The 10-meter 

bands (Blue, Green, Red, and NIR) was used as the reference resolution, and the 20-meter 

SWIR bands was resampled to 10 meters using the nearest neighbor resampling method. This 

method preserves the original pixel values and avoids introducing artificial data. 

Although Level-2A data is atmospherically corrected, residual cloud cover or cloud shadows 

may still be present. The Sen2Cor algorithm integrated within SNAP was used to generate a 

cloud mask. This algorithm utilizes spectral and spatial characteristics to identify cloud and 

cloud shadow pixels. Pixels identified as clouds or cloud shadows will be flagged and 

subsequently excluded from the NDMI calculation. 

A visual inspection of the preprocessed imagery was conducted to ensure accurate 

georeferencing.  

The preprocessed imagery, with cloud masking and resampling applied, will be exported from 

SNAP in GeoTIFF format for further processing in ArcGIS 10.8. 

Normalized Difference Moisture Index (NDMI) Calculation 

NDMI is calculated using the formula:  NDMI = (NIR - SWIR1) / (NIR + SWIR1) 

Where: 

NIR: Near-Infrared band (Sentinel-2 Band 8) 
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SWIR1: Shortwave Infrared 1 (Sentinel-2 Band 11)The NDMI utilizes the reflectance 

difference between the NIR and SWIR1 bands. The NIR band is highly sensitive to vegetation 

canopy structure, while the SWIR1 band is sensitive to water content in vegetation and soil. 

Therefore, the NDMI provides a measure of vegetation moisture, which is an indicator of 

vegetation health and stress. 

Spatial Analysis and Mapping 

ArcGIS 10.8 was used for spatial analysis, mapping, and visualization of the NDMI results. 

ArcGIS provides a comprehensive suite of tools for raster analysis, spatial statistics, and map 

creation. 

The NDMI raster layers for 2021, 2023, and 2024 were imported into ArcGIS 10.8. 

The NDMI values were classified into different categories of vegetation moisture content. The 

classification scheme was based on a combination of literature review and visual interpretation 

of the NDMI values in relation to land cover types in the study area. The categories include: 

 High Vegetation Moisture (Dense, healthy vegetation) 

 Moderate Vegetation Moisture (Moderately dense vegetation) 

 Low Vegetation Moisture(Sparse vegetation, stressed vegetation) 

 Moisture-deficient areas(Bare soil, non-vegetated areas) 

High-quality maps were created to visualize the spatial distribution of vegetation moisture 

content. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Flowchart for BSI, NDMI, NDVI, NDWI, TI and SSC 
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3.2.2 Vegetation Health Trend Assessment 

Sentinel-2 satellite imagery from 2021, 2023, and 2024 were processed to quantify and map 

vegetation density, reflecting the impact of mining activities. The workflow encompasses image 

acquisition, preprocessing using SNAP (Sentinel Application Platform), NDVI calculation in 

ENVI and spatial analysis using ArcGIS Pro 10.8. 

Data Acquisition 

Sentinel-2 Level-2A (surface reflectance) imagery were acquired for the Betaré-Oya region for 

the years 2021, 2023, and 2024. The acquisition dates ideally for NVDI was to fall within the 

peak growing season (typically August-October) to maximize vegetation signal. But due to case 

persistent cloud cover during the peak growing season, imagery from adjacent months 

(December) was considered. 

Table 3.6: Characteristics of downloaded Sentinel images used for NDVI 

Year Satellite Date of image Time  Phonological 

cycle 

2021 Sentinel-2 Level 2 09/12/2021 09:22:59 Dry Season 

2023 Sentinel-2 Level 2 14/12/2023 09:24:01 Dry Season 

2024 Sentinel-2 Level 2 23/12/2024 09:23:19 Dry Season 

The acquired images were preprocessed as earlier described above under the BSI preprocessing 

method using SNAP software. 

NDVI Calculation  

NDVI is calculated as: NDVI = (NIR - Red) / (NIR + Red) 

Where: 

NIR = Near-Infrared band (Sentinel-2 Band 8) 

Red = Red band (Sentinel-2 Band 4) 

Spatial Analysis and Mapping in ENVI/ArcGIS 10.8 

ArcGIS 10.8 and ENVI was used for spatial analysis and mapping. The Geotiff preprocessed 

raster images for 2021, 2023, and 2024 were imported into the software. Using the raster 

calculator, the NDVI values were obtained for each Year. The images were then classify into 
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meaningful categories (Dense Vegetation, Moderate Vegetation, Sparse Vegetation, Bare Soil 

and water).  

Accuracy Assessment 

The NDVI values and classifications were compared with satellite images from Google earth 

pro to assess the accuracy of the remote sensing analysis. Calculated metrics like Kappa 

coefficient, user's accuracy, and producer's accuracy were performed. 

3.2.3 Water quality indices Assessment 

A. Normalized Difference Water index 

Alluvial gold mining frequently disrupts natural drainage patterns, alters water quality, and 

affects the extent and connectivity of water bodies. Sentinel-2 imagery from 2021, 2023, and 

2024 were processed to quantify and map water bodies, allowing for the assessment of mining-

related disturbances. The analysis involved image acquisition, preprocessing using SNAP 

(Sentinel Application Platform), NDWI calculation, and spatial analysis using ENVI and 

ArcGIS 10.8. 

Data Acquisition 

Sentinel-2 Level-2A (surface reflectance) imagery were acquired for the Betaré-Oya region for 

the years 2021, 2023, and 2024. The timing of image acquisition aimed for the end of the rainy 

season (October/November) or the beginning of the dry season (December), when water bodies 

are typically at their fullest extent, and cloud cover is less likely. Due to cloud cover, images 

from adjacent months (September/November or January/February) can be considered, with 

careful assessment of potential changes in water levels. The characteristics of the images used 

for this study are similar to that as shown on Table 3.6. 

The acquired images were preprocessed as earlier described above under the BSI preprocessing 

method using SNAP software. 

NDWI Calculation 

NDWI = (Green - NIR) / (Green + NIR) 

Where: 

Green = Green band (Sentinel-2 Band 3) 

NIR = Near-Infrared band (Sentinel-2 Band 8) 

Spatial Analysis and Mapping Procedure 

 Import NDWI raster layers for 2021, 2023, and 2025. 
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 Applied a threshold to the NDWI raster to extract water bodies. This is a critical step 

and requires careful consideration. 

 Refined the threshold based on visual interpretation of the NDWI raster overlaid with 

high-resolution imagery from Google earth pro for accuracy assessment. Adjusted the 

threshold until the extracted water bodies accurately match the known water extents.  

 Converted the threshold NDWI raster into a binary classification: 

Water: NDWI values above the threshold (0.0) 

Non-Water: NDWI values below the threshold (0.0). 

B. Turbidity Index 

Data Acquisition 

To estimate the Turbidity Index (TI), Sentinel-2 Level-2A imagery was obtained from the 

Copernicus Open Space Datasystem The selection of images was based on the following 

criteria: 

 Minimal cloud cover (<10%) to reduce atmospheric interference. 

 Availability of essential spectral bands for turbidity assessment 

 Band 2 (Blue, 490 nm) 

 Band 3 (Green, 560 nm) 

 Band 4 (Red, 665 nm) 

 Band 8 (NIR, 842 nm) 

These bands were selected based on their spectral response to suspended particles and organic 

matter, which contribute to turbidity in water bodies. 

Preprocessing in SNAP 

The acquired Sentinel-2 Level-2A images were preprocessed using the Sentinel Application 

Platform (SNAP) to ensure radiometric and geometric consistency. The following steps were 

performed: 

The Sentinel-2 Level-2A images in .SAFE format were loaded into SNAP, and the bands 

relevant for turbidity estimation were selected. 

To optimize processing efficiency, the study area was clipped using the Subset Tool in SNAP. 

This step ensured that only relevant portions of the image were retained, eliminating 

unnecessary computational load. 
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Cloud-contaminated pixels were removed using the Scene Classification Layer (SCL) available 

in Sentinel-2 Level-2A products. Pixels corresponding to clouds, shadows, and land surfaces 

(SCL values: 3, 8, 9, and 10) were masked out to improve the accuracy of turbidity estimation. 

The final preprocessed image was exported as a GeoTIFF file with a 10-meter spatial resolution, 

making it compatible with GIS-based analysis in ArcGIS 10.8. 

Processing in ArcGIS 

The estimation of Turbidity Index (TI) was performed in ArcGIS 10.8 using empirical models 

that relate satellite reflectance values to in-situ turbidity measurements. The processing steps 

included: 

The preprocessed GeoTIFF file was imported into ArcGIS using the Add Data tool. The spatial 

reference was verified to ensure proper georeferencing (UTM Zone 33N, WGS 84). 

The Turbidity Index was calculated using a spectral band ratio approach that enhances the 

detection of suspended sediments and dissolved organic matter. The widely used formula is: 

TI = (Red/Green) 

Where: 

Red (Band 4, 665 nm) captures high turbidity levels due to its sensitivity to sediment-laden 

water. 

Green (Band 3, 560 nm) serves as a reference to normalize the impact of background 

reflectance. 

The Raster Calculator tool in ArcGIS was used to implement this equation by applying:  

("B4" / "B3").  

Where B4 = Red band reflectance and B3 = Green band reflectance. 

Classification of Turbidity Levels 

The computed Turbidity Index (TI) values were classified into distinct turbidity levels using the 

Reclassify Tool in ArcGIS. The classification thresholds were adapted from previous studies 

(Dogliotti et al., 2015; Novoa et al., 2021): 

 No Turbidity (<0) 

 Low Turbidity (0 –0.1) 

 High Turbidity (>0.1) 

Visualization and Mapping 

The final Turbidity Index (TI) map was styled using a color gradient to represent variations in 

water turbidity. The GeoTIFF and PNG files were exported for interpretation and reporting. 
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C. Suspended Sediment Concentration (SSC) 

Data Acquisition 

Sentinel-2 Level-2 imagery was utilized to estimate Suspended Sediment Concentration (SSC) 

in the study area. The images were acquired from the Copernicus Open space Datasystem 

website (Table 3.6). Level-2 data were selected as they provide atmospherically corrected 

Bottom of Atmosphere (BOA) reflectance, reducing the need for additional atmospheric 

correction. 

The selection of images was based on the following criteria: 

Cloud cover of less than 10% to ensure minimal atmospheric interference. 

Availability of essential spectral bands for SSC estimation, including: 

 Band 2 (Blue, 490 nm) 

 Band 3 (Green, 560 nm) 

 Band 4 (Red, 665 nm) 

 Band 8 (NIR, 842 nm) 

These spectral bands have been widely used in empirical models for SSC estimation due to their 

sensitivity to water reflectance and sediment load. 

Preprocessing in ESA SNAP 

The acquired Sentinel-2 images were preprocessed using the Sentinel Application Platform 

(SNAP) v11, developed by the European Space Agency (ESA). The following preprocessing 

steps were carried out: 

The Sentinel-2 Level-2 images in .SAFE format were loaded into SNAP, and individual bands 

relevant for SSC estimation were extracted. 

To optimize processing efficiency, the study area was extracted using the Subset Tool in SNAP. 

This step ensured that only relevant portions of the image were retained, minimizing 

unnecessary data processing. 

Cloud-contaminated pixels were removed using the Scene Classification Layer (SCL) available 

in Sentinel-2 Level-2 products. Pixels corresponding to clouds, shadows, and non-water areas 

(SCL values: 3, 8, 9, and 10) were excluded to prevent errors in SSC estimation. 
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Exporting Preprocessed Data 

The final preprocessed images were exported as GeoTIFF files with a spatial resolution of 10 

meters, ensuring compatibility with GIS processing software such as ArcGIS. 

Processing in ArcGIS 

The estimation of SSC was performed using empirical models that relate satellite reflectance to 

in-situ sediment concentration measurements. The processing steps included: 

The preprocessed GeoTIFF files were imported into ArcGIS 10.8 using the Add Data tool. 

Spatial reference was verified to ensure alignment with the study area’s coordinate system 

(UTM Zone 33N, WGS 84). 

SSC was estimated using an empirical algorithm based on the relationship between the Red 

(Band 4) and Blue (Band 2) spectral reflectance values. The applied model, widely used in 

remote sensing literature, is expressed as follows: 

SSC = a x (Red) / (Blue) + b 

Where: 

Red (665 nm, Band 4) is highly sensitive to suspended sediments due to its absorption 

properties. 

Blue (490 nm, Band 2) is used to normalize the sediment influence. 

a and b are calibration coefficients 

The Raster Calculator tool in ArcGIS was used to implement this equation by inputting: 

("B4" / "B2") * a + b 

Where B4 = Red band reflectance and B2 = Blue band reflectance. 

Reclassification of SSC Values 

To facilitate interpretation, the derived SSC raster was reclassified into distinct sediment 

concentration levels using the Reclassify Tool in ArcGIS. The classification scheme followed 

thresholds adapted from (Novoa et al., 2021): 

 Low Sediment Load (<10 mg/L) 

 Moderate Sediment Load (10 - 50 mg/L) 

 High Sediment Load (50 - 200mg/L) 

 Very High Sediment (>200 mg/L) 

Visualization and Mapping 

The final SSC map was styled using a color gradient to represent sediment concentration levels. 

The map was exported in GeoTIFF and PNG formats for visualization and reporting. 
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3.2.4 Land use land cover for monitoring rehabilitation success 

Sentinel-2 images were downloaded from corpenicus websites within the same period of the 

year for 3 different years; 2021, 2023 and 2025 (see Table 3.5), the chosen period was between 

December to March. This choice was guided by the search for same birthday images, good 

quality images and same phenological cycle; dry season and also by the challenge of finding 

good images with no cloud cover.  

Data pre-processing 

Satellite image transformations involve manipulations of multiple band data in order to 

highlight particular properties or features of interest within the study area, in a better and more 

effective way than the original input images 

Layer stacking  

Layer Stacking was done for each of the sentinel-2 images using SNAP software. Layer 

stacking simply involves the process of combining multiple image layers into a single image. 

In order to do that the layers should have the same extent (number of rows and number of 

columns), which means other bands which have different spatial resolution will need to 

resample to the target resolution.  

Geometric correction  

Geometric corrections include correcting for geometric distortions due to sensor-Earth 

geometry variations, and conversion of the data to real world coordinates (for example, latitude 

and longitude) on the Earth's surface. 

When a number images are to be used together, it is necessary that they be georeferenced, by 

georeferencing it is geometric correction, which is the process of correcting the distortions in 

an image and trans- forming it so that it has the properties of a map. Image-to-image registration 

method was conducted to match the images. So that the images could be as comparable as 

possible in terms of geometric and radiometric qualities. To ensure consistency between 

datasets during analysis, all data were projected to the Universal Transverse Mercator projection 

system (zone 32N) and the World Geodetic System 84 datum. Each image was demarcated and 

clipped to the extent of study. 

Image Enhancement 

Image enhancement was done to improve the appearance of the image to assist in visual 

interpretation and analysis. These enhancement functions included contrast, stretching to 

increase the tonal distinction between features, and spatial filtering to enhance or suppress 
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specific spatial patterns in the image. Also, different colour composites (4-3-2, 8-4-3 and 4-8-

3, 5-4-3 bands, for RGB channels) were used to enhance the identification of features so as to 

select training set or classification signatures for use. 

Selection of training set 

To carry out supervised classification, specific sites on the image that represent homogeneous 

examples of the known land-cover types are first selected. And these are commonly referred to 

as training sets because the spectral characteristics of these known areas are used to train the 

classification algorithm. Training sets are statistical descriptions of the multispectral 

characteristics of thematic categories used to "programme" the classifier with the digital 

characteristics of categories. Training areas are sampled portions of the scene, randomly or 

purposely selected, used to derive training statistics, and as such must encompass the spectral 

variability in the multispectral scene. Training sets were selected for every image (2021, 2023 

and 2025). Sample polygons were created based on visual interpretation on the image to 

recognize the Land Use/Land Cover feature classes. Every spectral analogous sub-area was 

demarcated with specified class name using a training set. 

Image Classification 

Image Classification is an abstract representation of features of the real-world using classes or 

terms derived through a mental process. In the case of spatial information, as for Land Cover, 

a classification describes the systematic framework, with the names of the classes, the criteria 

used to distinguish them, and the relationship between classes themselves. Classification thus 

requires the definition of class boundaries, which should be clear, precise, possibly quantitative, 

and based on objective criteria. Image classification operations are used to digitally identify and 

classify pixels in the data. It is usually performed on multi-channel data sets (A) and this process 

assigns each pixel in an image to a particular class or theme (B) based on statistical 

characteristics of the pixel brightness values. 

After selecting the training sample/sets, they were satisfactorily reviewed, supervised 

classification was done using the maximum likelihood classification Classifier (MLC) which is 

the most common efficient statistical technique for evaluating the standard Land use/ land cover 

classifications. By the classification, 5 Land Use and Land cover (LULC) types were 

recognized, vegetation, bare land, water bodies, mining activities and settlement were 

recognized. Due to similarities in the reflectance of certain classes, the algorithm may 

experience a confusion while classify the land cover classes and as such may refer to one class 
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as another. This was adjusted by post-classification where mistaken classes were reclassified 

into the actual classes. 

Accuracy Assessment 

Pixels to be sampled were selected randomly and transfered to google earth pro, by creating 

kml file or by using Google Earth map in ArcGIS as a base map. Google Earth offers high 

resolution satellite imagery in different dates and times for many places. 

Sample points are interpreted on the Google earth, the interpretation is compared to the 

classification results, and correctly classified pixels are tabulated.  

The proportion of correctly assigned pixels is estimated by comparing the number of sampled 

pixels correctly classified to the total number of sample points. 

The overall accuracy of the classified image compares how each of the pixels is classified versus 

the definite land cover conditions obtained from their corresponding ground truth data.  

Total (overall) accuracy = Number of correct plots/ Total number of plots ×100 

Producer’s accuracy measures errors of omission, which is a measure of how well real-world 

land cover types can be classified.  

Producer Accuracy = (Number of Correctly Classified Pixels in each Category)/ 

(Total Number of Reference Pixels in that Category) ×100 

User’s accuracy measures errors of commission, which represents the likelihood of a classified 

pixel matching the land cover type of its corresponding real-world location. 

Users Accuracy = (Number of Correctly Classified Pixels in each Category) / 

(Total number of Classified Pixels in that Category) ×100 

Kappa Coefficient (T) = ((TS×TCS)-∑ (Column Total * Row Total))/ (TS^2-∑ (Column 

Total x Row Total)) ×100 

The kappa coefficient have become a standard means of assessment of image classification 

accuracy.  

Change detection of Land Cover/ Land Use 

With the classification of images of the individual years, a post-classification approach of 

subtracting the classification maps, 2023 – 2021 and 2025 – 20223 was applied. Quantitative 
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area data of the overall land cover changes as well as the gains and losses in each category 

between 2021 and 2025 were compiled.  

 

Figure 3.7: Flowchart for LULC 

3.2.5 Proposed Mine Closure and Rehabilitation Strategy 

This section outlines the methodology employed to develop a comprehensive and contextually 

relevant mine closure and rehabilitation strategy for alluvial gold mining-affected areas in the 

Betaré-Oya region of Cameroon. This strategy was based on scientific data collected through 

remote sensing analysis (NDVI, NDWI, BSI, LST), supplemented by field observations, and 

literature review. The strategy aims to provide a practical and sustainable pathway for restoring 

degraded landscapes, mitigating environmental impacts, and promoting long-term ecological 

recovery. 

Literature Review 

A comprehensive review of relevant scientific literature, regulatory frameworks, and industry 

best practices related to mine closure and rehabilitation were conducted. The review focused 



 

 

 

73 

 

on: Rehabilitation Techniques; Environmental Regulations; Best Practices and case Studies: 

Analyzing case studies of successful and unsuccessful mine closure projects. 

Analysis of Remote Sensing Data and Field Observations 

Specifically the data was used to: Identify priority areas for rehabilitation; Assess water 

Resources; Characterize vegetation loss and monitor efforts of successful post-mining 

rehabilitation. 

Figure 3.7: Flowchart for LULC 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Land Degradation Assessment 

4.1.1 Field-based and Google Earth Pro preliminary evaluation 

The field visit conducted between January and March 2025 provided valuable ground-truth data 

and preliminary insights into the extent and nature of land degradation within the Betaré-Oya 

alluvial gold mining district. Direct observations and photographic documentation from active 

and abandoned mine sites revealed a consistent pattern of extensive soil erosion and 

sedimentation impacting nearby water bodies, widespread deforestation and removal of topsoil, 

leaving barren landscapes, and the presence of large, unrehabilitated mining pits filled with 

stagnant water. These observations aligned with the findings of Tchindjang et al. (2018), who 

documented similar patterns of deforestation and soil erosion associated with gold mining in 

the Eastern Region of Cameroon. The field photographs captured during the visit vividly 

illustrate these impacts.  

 

Figure 4.1: Abandoned Mining Pit with Turbid Water (Location: Kombo-koro) 
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Figure 4.1 shows a photograph taken at a former mining site at kombo-koro, depicting a large, 

abandoned mining pit filled with turbid, stagnant water. The water's opaque, brownish color 

suggests a high concentration of suspended sediments and potential chemical contamination, 

consistent with the findings of Babut et al. (2019), who reported elevated levels of mercury and 

other heavy metals in water samples from the Betaré-Oya region. The surrounding landscape is 

devoid of vegetation, with exposed soil and eroded banks clearly visible. This lack of vegetation 

cover exacerbates soil erosion and hinders natural regeneration, highlighting the long-term 

environmental consequences of unregulated mining practices, where excavated areas are left 

unrehabilitated, leading to the accumulation of contaminated water and the loss of biodiversity." 

 

Figure 4.2: Active Mining Site with Heavy Machinery (Location: Timangaro) 

Figure 4.2 shows an active mining site at Timangaro, with heavy machinery excavating soil and 

washing plant. The photograph reveals the scale of deforestation required to access alluvial gold 

deposits, with a significant area of previously forested land now cleared and disturbed. The 

presence of sediment plumes in nearby water bodies suggests ongoing soil erosion and 

sedimentation, further impacting water quality and aquatic habitats. This aligns with the 
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findings of Kamga et al. (2017), who used Landsat imagery to document the expansion of 

artisanal mining at the expense of vegetation cover in the Betaré-Oya region. 

 

Figure 4.3: Altered River Course and Sediment Deposition (Location: Lom River) 

Figure 4.3 depicts a section of the Lom River where the natural river course has been 

significantly altered due to mining activities. The photograph shows a large pile of excavated 

material deposited directly adjacent to the river, leading to increased sedimentation and 

turbidity. The altered river course can disrupt aquatic ecosystems and impact downstream water 

users, as noted by Lindahl (2014), who highlighted the excessive excavation of riverbanks 

leading to increased sedimentation and changes in river flow. 

Figure 4.4 shows a barren landscape in an abandoned mining area, characterized by scattered 

debris, minimal vegetation cover, and compacted soil. The photograph suggests a complete loss 

of topsoil and a lack of conditions suitable for natural regeneration. This aligns with the findings 

of D'Souza (2020), who emphasized the severe environmental degradation, including land 

degradation, deforestation, and biodiversity loss, resulting from artisanal and small-scale 

mining in Africa." 
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Figure 4.4: Barren Landscape with Scattered Debris (Location: Nakayo) 

 

Figure 4.5: Large Excavation Pit with Standing Water (Location: Mali village) 
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Figure 4.5 shows a large excavation pit filled with standing water, likely rainwater mixed with 

sediment and potential contaminants. The photograph highlights the scale of disturbance caused 

by mining activities and the lack of rehabilitation efforts to restore the landscape. The standing 

water can serve as a breeding ground for mosquitoes and other disease vectors, posing a risk to 

public health, as discussed by Esdaile & Chalker (2018), who highlighted the health risks 

associated with mercury and cyanide contamination in alluvial gold concentration. 

 

Figure 4.6: Deforested Area with Mining Pits in the Distance (Location: Bouli) 

Figure 4.6 shows a deforested area with mining pits visible in the distance, illustrating the 

encroachment of mining activities into previously forested regions. The photograph highlights 

the direct link between gold mining and deforestation, which can have significant impacts on 

biodiversity, carbon sequestration, and climate change, as noted by Sonwa et al. (2020), who 

documented extensive deforestation due to gold mining, agriculture, and logging in the Betaré-

Oya region. 

Figure 4.7 shows turbid water flowing through a stream near an active mining site. The 

photograph provides visual evidence of the direct impact of mining activities on water quality, 

with sediment runoff contributing to increased turbidity and potential contamination. This 



 

 

 

79 

 

aligns with the findings of Chica & Walker (2020), who reported increased turbidity and 

elevated concentrations of heavy metals in surface water samples from mining-affected rivers." 

 

Figure 4.7: Turbid Water Flowing Through Mining-Affected Area (Location: Tributary 

of River Mari) 

Figure 4.8, a photograph taken in an active mining area at Ngengue, provides a stark illustration 

of the severe soil erosion resulting from alluvial gold mining. The image reveals a deeply 

incised soil profile, exposing distinct soil horizons and highlighting the removal of the fertile 

topsoil layer. The vertical striations in the soil face indicate the presence of erosion gullies, 

formed by the concentrated flow of surface water. The presence of scattered rocks and debris 

further contributes to the instability of the landscape. This type of soil erosion can lead to the 

loss of valuable nutrients, reduced water infiltration, and increased sedimentation in nearby 

water bodies, as discussed by Mandal et al. (2019), who emphasized the use of remote sensing-

derived indices to evaluate soil degradation and track soil erosion." 

The limited vegetation cover in the upper portion of the image suggests that natural regeneration 

is hindered by the degraded soil conditions. The presence of a small amount of vegetation is not 

enough to prevent further erosion. The photograph highlights the long-term consequences of 

mining activities on soil health and the challenges associated with restoring degraded 
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landscapes, as emphasized by Smith & Watson (2017), who discussed the importance of soil 

remediation and sustainable land-use planning in effective reclamation and restoration 

strategies. 

 

Figure 4.8: Exposed Soil Profile and Erosion Gullies (Location: Ngengue) 

Interviews with local residents, miners, and community leaders further contextualized these 

physical observations. Residents consistently reported a decline in agricultural productivity due 

to soil degradation and water pollution. Miners acknowledged the environmental impacts of 

their activities but cited economic necessity as the primary driver. Community leaders 

expressed concerns about the long-term sustainability of mining and the need for effective 

rehabilitation strategies. One resident stated, 'Before the mining, we could grow anything here. 

Now, the soil is dead, and the water is poisoned.' This sentiment underscores the direct impact 

of mining activities on local livelihoods and the urgent need for sustainable mining practices 

and effective rehabilitation efforts. 

To further contextualize the field observations and assess the spatial distribution and severity 

of land degradation across the study area, high-resolution Google Earth Pro imagery from 2023 

was analyzed. The imagery confirmed the presence of numerous abandoned mine sites, often 

characterized by bare earth, altered drainage patterns, and a lack of vegetation cover. The 
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imagery also revealed the expansion of active mining areas into previously forested regions, 

highlighting the ongoing deforestation associated with the industry. 

 

Figure 4.9: Google Earth Pro Image - Linear Mining Pattern (Location: N 5°33'43.2", E 

14°03'15.84") 

Figure 4.9 shows a Google Earth Pro image of a mining area characterized by a linear pattern 

of disturbance. The image reveals a series of interconnected mining pits and access roads 

extending through a previously forested area. The linear pattern suggests that mining activities 

are following a specific geological feature or river channel, as alluvial gold deposits are often 

concentrated along these features. The image also shows a clear contrast between the disturbed 

mining area and the surrounding intact forest, highlighting the impact of mining on the 

landscape. This pattern aligns with the findings of Kamga et al. (2017), who used Landsat 

imagery to document the expansion of artisanal mining at the expense of vegetation cover in 

the Betaré-Oya region. 

Figure 4.10 shows a Google Earth Pro image of a mining area located directly adjacent to a 

water body. The image reveals extensive soil disturbance and sedimentation along the shoreline, 

indicating the direct impact of mining activities on water quality. The presence of bare earth 

and altered drainage patterns suggests that the natural hydrological processes have been 

disrupted. This proximity of mining activities to water bodies poses a significant threat to 
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aquatic ecosystems and downstream water users, as discussed by Babut et al. (2019), who 

reported elevated levels of mercury and other heavy metals in water samples from the Betaré-

Oya region. 

 

Figure 4.10: Google Earth Pro Image - Mining Area Adjacent to Water Body (Location: 

N 5°30'54", E 13°54'54") 

Figure 4.11 shows a Google Earth Pro image of a large-scale mining operation, characterized 

by extensive deforestation, large excavation pits, and processing facilities. The image reveals 

the scale of disturbance caused by mechanized mining activities and the significant impact on 

the landscape. The presence of processing facilities suggests that the mining operation is 

extracting and processing large quantities of ore, potentially leading to increased environmental 

impacts. This aligns with the findings of D'Souza (2020), who emphasized the severe 

environmental degradation, including land degradation, deforestation, and biodiversity loss, 

resulting from artisanal and small-scale mining in Africa. Also, the image reveals a landscape 

dominated by bare earth, with limited vegetation cover and altered drainage patterns. The 

photograph highlights the direct link between gold mining and deforestation, which can have 

significant impacts on biodiversity, carbon sequestration, and climate change, as noted by 

Sonwa et al. (2020), who documented extensive deforestation due to gold mining, agriculture, 

and logging in the Betaré-Oya region. 
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Figure 4.11: Google Earth Pro Image - Large-Scale Mining Operation (Location: N 

5°35'52.8", E 14°03'38.8") 

 

Figure 4.12: Google Earth Pro Image - Flooded Mining Area (Location: N 5°38'2.4", E 

14°16'45.92") 
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Figure 4.12 shows a Google Earth Pro image of a mining area that appears to be flooded. The 

image reveals a landscape dominated by water, with scattered patches of bare earth and limited 

vegetation cover. The flooding may be due to the disruption of natural drainage in the mining 

area and can lead to the mobilization of sediments and contaminants, further impacting water 

quality and aquatic ecosystems, as discussed by Chica & Walker (2020), who reported increased 

turbidity and elevated concentrations of heavy metals in surface water samples from mining-

affected rivers. 

A comparison of Google Earth Pro imagery with the field photographs revealed a strong 

correlation between areas identified as severely degraded in the field and areas exhibiting 

extensive bare earth and altered topography in the satellite imagery. Furthermore, the imagery 

allowed for a broader spatial assessment of land degradation patterns, identifying areas that 

were inaccessible during the field visit. For example, Google Earth Pro imagery revealed a 

network of interconnected mining pits and drainage channels that were not fully apparent from 

ground-level observations, highlighting the cumulative impact of mining activities on the 

landscape. 

The use of Google Earth Pro also allowed for a preliminary assessment of rehabilitation efforts. 

While some areas showed signs of natural revegetation, particularly along riverbanks, the 

majority of abandoned mine sites remained largely unrehabilitated. This is evident in the field 

photograph shown in Figure 4.4, which depicts a barren landscape with scattered debris and 

minimal vegetation cover. This suggests a limited implementation of effective mine closure and 

rehabilitation strategies, consistent with the findings of Kouamé et al. (2022), who noted the 

lack of proper rehabilitation strategies in abandoned mining sites in the region. 

4.1.2 Satellite Image Analysis 

The extent of land degradation was analyzed using remote sensing techniques, including Bare 

Soil Index (BSI) and Normalized Difference Moisture Index (NDMI).  

Bare Soil index (BSI) 

The BSI maps (Figures 4.14, 4.15, and 4.16) illustrate the spatial distribution of bare soil across 

the Betaré-Oya region for the years 2021, 2023, and 2024. In 2021, the BSI map shows a 

relatively low proportion of bare soil, with most areas classified as dense vegetation, sparse 

vegetation, or dry grass. However, by 2023, a noticeable increase in bare soil is evident, 

particularly in areas near active and abandoned mining sites. This trend continues in 2024, with 

further expansion of bare soil areas and a corresponding decrease in vegetation cover. The 
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spatial patterns of BSI change appear to be strongly correlated with the locations of mining 

activities, suggesting a direct link between mining and land degradation. 

 

Figure 4.14: BSI for 2021 
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Figure 4.15: BSI for 2023 
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Figure 4.16: BSI for 2024 
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Table 4.1: Table Statistics for BSI 

Index Class Name Area (hectares) Percentage (%) 

 

BSI 2021 

Dense Vegetation 283285.26 25.21 

Sparse Vegetation 307170.9 27.34 

Dry grass 317425.64 28.25 

Bare Soil 215701.32 19.20 

BSI 2023 

Dense Vegetation 245231.05 21.83 

Sparse Vegetation 330714.56 29.43 

Dry grass 261889.88 23.31 

Bare Soil 285747.14 25.43 

BSI 2024 

Dense Vegetation 172727.72 15.37 

Sparse Vegetation 268090.67 23.86 

Dry grass 253227.35 22.54 

Bare Soil 429539.52 38.23 

 

 

Figure 4.17: BSI trend from 2021 to 2024 

The BSI statistics (Table 4.1) provide a quantitative assessment of bare soil changes. The area 

of bare soil increased from 19.20% in 2021 to 38.23% in 2024, representing a significant 
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increase in land degradation. Conversely, the area of dense vegetation decreased from 25.21% 

in 2021 to 15.37% in 2024, indicating a substantial loss of vegetation cover. The areas classified 

as sparse vegetation and dry grass also showed fluctuations, suggesting a dynamic response of 

vegetation to mining-related disturbances. The BSI trend from 2021 to 2024 (Figure 4.17) 

visually summarizes the changes in bare soil extent over time. The graph shows a consistent 

increase in the percentage of bare soil and a decrease in the percentage of dense vegetation. 

This trend suggests that mining activities are having a negative impact on land cover in the 

Betaré-Oya region. 

 Normalized Difference Moisture Index (NDMI) 

The NDMI maps (Figures 4.18, 4.19, and 4.20) illustrate the spatial distribution of vegetation 

moisture content across the Betaré-Oya region for the years 2021, 2023, and 2024. In 2021, the 

maps show a relatively high proportion of high vegetation moisture, particularly in the northern 

and western parts of the study area. However, by 2023, a noticeable increase in Moisture-

deficient area/Bare soil is evident, with a corresponding increase in areas classified as low 

vegetation moisture and moderate vegetation moisture. This trend continues in 2024, with 

further shrinkage of low and moderate vegetation moisture areas and expansion of degraded 

areas (moisture deficient areas/bare soil). The NDMI statistics (Table 4.2) provide a quantitative 

assessment of vegetation moisture changes. Moisture-deficient areas (bare soil) remained nearly 

the same from 16.54% (2021) to 16.56% (2023). Low vegetation moisture decreased from 

30.38% (2021) to 29.57% (2023). Moderate and high moisture vegetation increased slightly in 

2023. The area of moisture-deficient /bare soil greatly increases from16.56% in 2023 to 24.68% 

in 2024, indicating a substantial increase mining activities. Conversely there is an increased in 

high moisture from 25.34% in 2023 to 28.85% in 2024 but not as high as moisture deficient 

areas, this increase may be due to mining disturb soil structure reducing infiltration while 

promoting water logging, open pits and depressions created by abandoned mined sites that 

collect and retained water. 

The NDMI trend from 2021 to 2024 (Figure 4.20) visually summarizes the changes in 

vegetation moisture content over time. The graph shows a consistent decline in the percentage 

of low and moderate vegetation moisture and an increase in the percentage of moisture-deficient 

areas/bare soil. This trend suggests that mining activities are having a negative impact on 

vegetation moisture in the Betaré-Oya region. 
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Figure 4.18: NDMI for 2021 
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Figure 4.19: NDMI for 2023 
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 Figure 4.19: NDMI for 2024 
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Table 4.2: Table Statistics for NDMI 

Index Class Name Area (hectares) Percentage (%) 

 

NDMI 

2021 

Moisture-deficient area/Bare soil 185862.18 16.54 

Low Vegetation Moisture 341330 30.38 

Moderate Vegetation Moisture 317577.88 28.26 

High Vegetation Moisture 278813.06 24.81 

NDMI 

2023 

Moisture-deficient area/Bare soil 186046.40 16.56 

Low Vegetation Moisture 332242.87 29.57 

Moderate Vegetation Moisture 320538.28 28.53 

High Vegetation Moisture 284755.08 25.34 

NDMI 

2024 

Moisture-deficient area/Bare soil 277331.19 24.68 

Low Vegetation Moisture 294139.89 26.18 

Moderate Vegetation Moisture 227989.99 20.29 

High Vegetation Moisture 324124.19 28.85 

 

Figure 4.20: NDMI trend from 2021 to 2024 
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The BSI and NDMI maps and statistics reveal a clear trend of increasing bare soil extent and 

decreasing vegetation moisture content in the Betaré-Oya region from 2021 to 2024. The spatial 

patterns of BSI and NDMI change are strongly correlated with the locations of mining activities, 

suggesting a direct link between mining and land degradation. 

The observed increase in bare soil extent and decrease in vegetation moisture content are likely 

due to a combination of factors associated with mining activities, including deforestation, 

topsoil removal, soil compaction, and soil contamination. Deforestation directly reduces 

vegetation cover, while topsoil removal and soil compaction hinder natural regeneration. Soil 

contamination from heavy metals and other pollutants can also inhibit plant growth and reduce 

vegetation moisture content. 

BSI and NDMI are useful tools for assessing land degradation and vegetation moisture, but they 

have some limitations. BSI is sensitive to soil type and moisture content, which can affect the 

accuracy of the results. NDMI is sensitive to atmospheric conditions and vegetation type, which 

can also affect the accuracy of the results. 

The findings are consistent with previous studies that have used BSI and NDMI to assess land 

degradation and vegetation moisture in mining-affected areas. For example, Chandrasekar et al. 

(2016) found that BSI values increased in areas affected by mining activities, indicating an 

increase in land degradation. Chen et al. (2021) found that NDMI values decreased in areas 

affected by mining activities, indicating a decrease in vegetation moisture. 

4.2 Vegetation Health Assessment (Normalized Difference Vegetation Index) 

The NDVI maps (Figures 4.21, 4.22, and 4.23) provide a visual representation of vegetation 

health across the Betaré-Oya region. In 2021, the maps show a relatively high proportion of 

dense vegetation, particularly in the northern and western parts of the study area. However, by 

2023, a noticeable decline in dense vegetation is evident, with a corresponding increase in areas 

classified as sparse vegetation and bare soil. This trend continues in 2024, with further 

fragmentation of dense vegetation patches and expansion of degraded areas. The NDVI 

statistics (Table 4.3) provide a quantitative assessment of vegetation health changes. The area 

of dense vegetation 46.13% to 42.34% in 2024, representing a significant loss of vegetation 

cover. Conversely, the area of bare soil increased from 1.82% in 2021 to 12.55% in 2024, 

indicating a substantial increase in land degradation. The areas classified as sparse vegetation 

and moderate vegetation also showed fluctuations, suggesting a dynamic response of vegetation 

to mining-related disturbances. 
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Figure 4.21: NDVI for 2021  
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Figure 4.23: NDVI for 2023  
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Figure 4.24: NDVI for 2024 
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Table 4.3: Table Statistics for NDVI 

Index Class Name Area (hectares) Percentage (%) 

 

NDVI 

2021 

Water 18130.72 1.61 

Bare soil 20446.78 1.82 

Sparse vegetation 271631.71 24.18 

Moderate Vegetation 295101.27 26.26 

Dense Vegetation 518272.64 46.13 

NDVI 

2023 

Water 17737.16 1.58 

Bare soil 76917.32 6.85 

Sparse vegetation 293233.83 26.10 

Moderate Vegetation 307388.95 27.36 

Dense Vegetation 428295.24 38.12 

NDVI 

2024 

Water 16025.19 1.43 

Bare soil 140979.14 12.55 

Sparse vegetation 248247.3 22.09 

Moderate Vegetation 242560.41 21.59 

Dense Vegetation 475773.22 42.34 

 

 

Figure 4.25: NDVI trend from 2021 to 2024 

1.61 1.82

24.18
26.26

46.13

1.58

6.85

26.1
27.36

38.12

1.43

12.55

22.09 21.59

42.34

0

5

10

15

20

25

30

35

40

45

50

Water Bare soil Sparse vegetation Moderate

Vegetation

Dense Vegetation

P
er

ce
n

ta
g
e
 (

%
)

NDVI

2021 2023 2024



 

 

 

99 

 

The NDVI trend from 2021 to 2024 (Figure 4.25) visually summarizes the changes in vegetation 

health over time. The graph shows a consistent increase in the percentage of bare soil.  

The NDVI maps and statistics reveal a clear trend of declining vegetation health in the Betaré-

Oya region from 2021 to 2024. The decrease in dense vegetation and the increase in bare soil 

indicate that mining activities are having a significant impact on vegetation cover. The 

fragmentation of dense vegetation patches suggests that mining activities are disrupting the 

connectivity of ecosystems and reducing the resilience of vegetation to disturbances. The 

observed decline in vegetation health is likely due to a combination of factors associated with 

mining activities, including deforestation, topsoil removal, soil compaction, and soil 

contamination. Deforestation directly reduces vegetation cover, while topsoil removal and soil 

compaction hinder natural regeneration. Soil contamination from heavy metals and other 

pollutants can also inhibit plant growth and survival. The findings are consistent with previous 

studies that have used NDVI to assess vegetation health in mining-affected areas. For example, 

Pettorelli et al. (2005) found that NDVI values decreased in areas affected by mining activities, 

indicating a decline in vegetation health. The study also supports the findings of Chen et al. 

(2021), who found that NDVI values were negatively correlated with soil degradation in mining 

areas. 

4.3: Water Quality Assessment 

 Normalized Difference Water index  

The NDWI maps (Figures 4.26, 4.27, and 4.28) show the spatial distribution of water bodies 

and floodplains in the Betaré-Oya region. In 2021, the maps show a relatively high proportion 

of water bodies, particularly in the central and southern parts of the study area. However, by 

2023, a noticeable decrease in water bodies is evident, with a corresponding increase in areas 

classified as floodplains/mine pit water. This trend continues in 2024, with further shrinkage of 

water bodies and expansion of floodplains/mine pit water. 

The NDWI statistics (Table 4.4) provide a quantitative assessment of water body changes. The 

area of water bodies decreased from 1.71% in 2021 to 1.49% in 2024, representing a significant 

loss of water resources. Conversely, the area of floodplains/mine pit water increased from 

1.41% in 2021 to 17.52% in 2024, indicating a substantial increase in areas affected by mining-

related water disturbances. 
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Figure 4.26: NDWI for 2021 
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Figure 4.27: NDWI for 2023 
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Figure 4.28: NDWI for 2024 
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Table 4.4: Table Statistics for NDWI 

Index Class Name Area (hectares) Percentage (%) 

 

NDWI 

2021 

Built-Up/Dense Vegetation 547451.35 48.72 

Sparse vegetation/Dry Soil 541123.69 48.16 

Flood Plains/Mine Pit water 15831.29 1.41 

Water Bodies 19176.79 1.71 

NDWI 

2023 

Built-Up/Dense Vegetation 538490.85 47.93 

Sparse vegetation/Dry Soil 550625.17 49.01 

Flood Plains/Mine Pit water 17026.17 1.52 

Water Bodies 17470.44 1.55 

NDWI 

2024 

Built-Up/Dense Vegetation 492868.05 43.87 

Sparse vegetation/Dry Soil 417129.09 37.12 

Flood Plains/Mine Pit water 196795.78 17.52 

Water Bodies 16792.34 1.49 

 

 

Figure 4.29: NDWI trend from 2021 to 2024 
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 Turbidity Index (TI) 

The TI maps (Figures 4.30, 4.31, and 4.32) show the spatial distribution of turbidity in the 

Betaré-Oya region. In 2021, the maps show a relatively low proportion of high turbidity, 

with most areas classified as low turbidity. However, by 2023, a noticeable increase in low 

turbidity is evident (99.59%). However in 2024, there is slight decrease for low turbidity 

(88.09%).  

 

Figure 4.30: TI for 2021 
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 Figure 4.31: TI for 2023 
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Figure 4.32: TI for 2024 
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Table 4.5: Table Statistics for TI 

Index Class Name Area (hectares) Percentage (%) 

 

TI 2021 

No Turbidity 475020 42.28 

Low Turbidity 648284.8 57.70 

High Turbidity 278.28 0.02 

TI 2023 

No Turbidity 3928.44 0.35 

Low Turbidity 1118957.88 99.59 

High Turbidity 696.31 0.06 

TI 2024 

No Turbidity 131318.88 11.69 

Low Turbidity 989816.77 88.09 

High Turbidity 2449.61 0.22 

 

 

Figure 4.33: TI from 2021 to 2024 
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 Suspended Sediment Concentration (SSC) 

The SSC maps (Figures 4.34, 4.35, and 4.36) show the spatial distribution of suspended 

sediment concentration in the Betaré-Oya region. In 2021, the maps show a relatively low 

proportion of very high sediment (1.81%), with most areas classified as moderate sediment 

load. However, by 2023, there was no change for very high sediment load (1.81%). This 

trend continues in 2024, with further expansion of very high sediment load (20.50%). 

 

Figure 4.34: SSC for 2021 
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Figure 4.35: SSC for 2023 
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Figure 4.36: SSC for 2024 
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Table 4.6: Table Statistics for SSC 

Index Class Name Area (hectares) Percentage (%) 

 

SSC 

2021 

Low sediment load 38443.33 3.42 

Moderate sediment load 680699.3 60.58 

High Sediment load 384064.11 34.18 

Very high sediment load 20376.38 1.81 

SSC 

2023 

Low sediment load 14447.12 1.29 

Moderate sediment load 692314.65 61.62 

High Sediment load 396471.67 35.29 

Very high sediment load 20379.19 1.81 

SSC 

2024 

Low sediment load 3982.22 0.35 

Moderate sediment load 373361.53 33.23 

High Sediment load 515956.15 45.92 

Very high sediment load 230285.36 20.50 

 

 

Figure 4.37: SSC from 2021 to 2024 
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The trends in NDWI, TI, and SSC values from 2021 to 2024 (Figures 4.29, 4.33, and 4.37) 

visually summarize the changes in water quality over time. The graphs show a decrease in water 

bodies and an increase in floodplains/mine pit water, low turbidity, and very high sediment 

load, indicating that mining activities are having a negative impact on water quality in the 

Betaré-Oya region.  

NDWI, TI, and SSC maps and statistics reveal a clear trend of declining water quality in the 

Betaré-Oya region from 2021 to 2024. The decrease in water bodies and the increase in 

floodplains/mine pit water, turbidity, and sediment load indicate that mining activities are 

having a significant impact on water resources. 

The observed decline in water quality is likely due to a combination of factors associated with 

mining activities, including sediment runoff, chemical contamination, and altered drainage 

patterns. The excavation of soil and the use of mercury and cyanide in gold extraction contribute 

to the contamination of water resources. 

The findings are consistent with previous studies that have used NDWI, TI, and SSC to assess 

water quality in mining-affected areas. Chen et al. (2020) found that NDWI values decreased 

and TI and SSC values increased in areas affected by mining activities, indicating a decline in 

water quality. The study also supports the findings of Kumar et al. (2019), who found that 

mining activities were associated with increased levels of heavy metals in water resources. 

4.4. Land Used/Land Cover Monitoring and Evaluation (LULC) 

LULC maps (Figures 4.38, 4.39, and 4.40) provide a visual representation of land use and land 

cover across the Betaré-Oya region. In 2021, the maps show a relatively high proportion of 

dense vegetation, particularly in the northern and western parts of the study area. However, by 

2023, a noticeable decrease in dense vegetation is evident, with a corresponding increase in 

areas classified as bare land and mine site. This trend continues in 2024, with further 

fragmentation of dense vegetation patches and expansion of degraded areas. 

The LULC statistics (Table 4.7) provide a quantitative assessment of LULC changes. The area 

of dense vegetation decreased from 38.27% in 2021 to 30.69% in 2024, representing a 

significant loss of vegetation cover. Conversely, the area of bare land increased from 32.22% 

in 2021 to 45.48% in 2024, indicating a substantial increase in land degradation. The area of 

mine site also increased from 2.69% in 2021 to 4.76% in 2024, further confirming the expansion 

of mining activities. 

 



 

 

 

113 

 

 

Figure 4.38: LULC for 2021 
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Figure 4.39: LULC for 2023 

 



 

 

 

115 

 

Figure 4.40: LULC for 2024 

Table 4.7: Table Statistics for LULC 

Index Class Name Area (hectares) Percentage (%) 

 Dense Vegetation 430001.36 38.27 
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LULC 

2021 

Sparse Vegetation 240000.67 21.36 

Water 20019.3 1.78 

Settlement 41378.37 3.68 

Bare Land 362011.39 32.22 

Mine Site 30202.77 2.69 

LULC 

2023 

Dense Vegetation 410022.55 36.49 

Sparse Vegetation 220067.55 19.59 

Water 23871.62 2.12 

Settlement 45058.37 4.01 

Bare Land 389065.83 34.63 

Mine Site 35545.71 3.16 

LULC 

2024 

Dense Vegetation 344844.74 30.69 

Sparse Vegetation 151026.71 13.44 

Water 15046.81 1.34 

Settlement 48103.41 4.28 

Bare Land 511034.88 45.48 

Mine Site 53528.71 4.76 

 

 

Figure 4.41: LULC from 2021 to 2024 
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Figure 4.42: LULC Change detection from 2021 to 2023 

Table 4.8: LULC change detection table statistics from 2021 to 2023 

LULC 

2021 

LULC 2023 Change Detection 

Category 

Area 

(hectares) 

Percentage 

(%) 

Dense 

Vegetation 

Dense 

Vegetation 

Dense Vegetation to 

Dense Vegetation 

264946.11 23.58 
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Dense 

Vegetation 

Sparse 

vegetation 

Dense Vegetation to 

Sparse vegetation 

89388.71 7.96 

Sparse 

Vegetation 

Sparse 

Vegetation 

Sparse Vegetation to 

Sparse Vegetation 

132434.81 11.79 

Bare land Settlement Bare land to Settlement 7552.7 0.67 

Bare land Sparse 

Vegetation 

Bare land to Sparse 

Vegetation 

366.63 0.03 

Mine site Dense 

Vegetation 

Mine site to Dense 

Vegetation 

10.08 0.00 

Mine site Sparse 

Vegetation 

Mine site to Sparse 

Vegetation 

3444.49 0.31 

Bare land Bare land Bare land to Bare land 307752.74 27.39 

Mine site Settlement Mine site to Settlement 8451.47 0.75 

Sparse 

Vegetation 

Dense 

Vegetation 

Sparse Vegetation to 

Dense Vegetation 

15826.11 1.41 

Bare land Dense 

Vegetation 

Bare land to Dense 

Vegetation 

912.11 0.08 

Bare land Mine site Bare land to Mine site 12395.36 1.10 

Sparse 

Vegetation 

Bare land Sparse Vegetation to Bare 

land 

58369.24 5.20 

Sparse 

Vegetation 

Settlement Sparse Vegetation to 

Settlement 

23061.19 2.05 

Mine site Bare land Mine site to Bare land 7318.35 0.65 

Mine site Mine site Mine site to Mine site 8058.55 0.72 

Dense 

Vegetation 

Settlement Dense Vegetation to 

Settlement 

3440.8 0.31 

Sparse 

Vegetation 

Mine site Sparse Vegetation to 

Mine site 

31580.6 2.81 

Dense 

Vegetation 

Bare land Dense Vegetation to Bare 

land 

50420.79 4.49 
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Dense 

Vegetation 

Mine site Dense Vegetation to 

Mine site 

51032.81 4.54 

Settlement Dense 

Vegetation 

Settlement to Dense 

Vegetation 

209.57 0.02 

Settlement Sparse 

Vegetation 

Settlement to Sparse 

Vegetation 

920.77 0.08 

Settlement Settlement Settlement to Settlement 2861.83 0.25 

Settlement Bare land Settlement to Bare land 185.81 0.02 

Settlement Mine site Settlement to Mine site 5.56 0.00 

Water Mine site Water to Mine site 2245.68 0.20 

Water Water Water to Water 17746.19 1.58 

Mine site Water Mine site to Water 13417.81 1.19 

Water Settlement Water to Settlement 9.17 0.00 

Dense 

Vegetation 

Water Dense Vegetation to 

Water 

0.82 0.00 

Water Bare land Water to Bare land 5.34 0.00 

Water Sparse 

Vegetation 

Water to Sparse 

Vegetation 

1.32 0.00 

Sparse 

Vegetation 

Water Sparse Vegetation to 

Water 

1.22 0.00 

Bare land Water Bare land to Water 9150.32 0.81 

Settlement Water Settlement to Water 3.94 0.00 

Water Dense 

Vegetation 

Water to Dense 

Vegetation 

0.26 0.00 
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 Figure 4.43: LULC Change detection histogram from 2021 to 2023 
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Figure 4.44: LULC Change detection from 2021 to 2024 

Table 4.9: LULC change detection table statistics from 2021 to 2024 

LULC 2021 LULC 2024 Change Detection 

Category 

Area (Hectares) Percenta

ge (%) 

Dense 

vegetation 

Dense 

Vegetation 

Dense vegetation to 

Dense Vegetation 

240467.49 21.40 
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Sparse 

vegetation  

Dense 

Vegetation 

Sparse vegetation  to 

Dense Vegetation 

2115.56 0.19 

Sparse 

vegetation  

Sparse 

vegetation 

Sparse vegetation  to 

Sparse vegetation 

42851.73 3.81 

Bare land Bare land Bare land to Bare land 367991.46 32.75 

Mine site Bare land Mine site to Bare land 2567.37 0.23 

Sparse 

vegetation  

Bare land Sparse vegetation  to 

Bare land 

117507.74 10.46 

Bare land Sparse 

vegetation  

Bare land to Sparse 

vegetation  

5112.37 0.46 

Bare land Settlement Bare land to Settlement 7958.72 0.71 

Dense 

vegetation 

Sparse 

vegetation  

Dense vegetation to 

Sparse vegetation  

37054.61 3.30 

Mine site Dense 

Vegetation 

Mine site to Dense 

Vegetation 

2266.81 0.20 

Bare land Dense 

Vegetation 

Bare land to Dense 

Vegetation 

1580.31 0.14 

Mine site Sparse 

vegetation  

Mine site to Sparse 

vegetation  

1706.92 0.15 

Mine site Mine site Mine site to Mine site 9260.55 0.82 

Sparse 

vegetation  

Mine site Sparse vegetation  to 

Mine site 

94481.34 8.41 

Sparse 

vegetation  

Settlement Sparse vegetation  to 

Settlement 

19315.93 1.72 

Bare land Mine site Bare land to Mine site 15358.11 1.37 

Dense 

Vegetation 

Bare land Dense Vegetation to 

Bare land 

12240.12 1.09 

Mine site Settlement Mine site to Settlement 5733.08 0.51 

Dense 

Vegetation 

Settlement Dense Vegetation to 

Settlement 

3463.52 0.31 
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Dense 

Vegetation 

Mine site Dense Vegetation to 

Mine site 

74009.33 6.59 

Settlement Dense 

Vegetation 

Settlement to Dense 

Vegetation 

369.45 0.03 

Settlement Bare land Settlement to Bare land 897.95 0.08 

Settlement Mine site Settlement to Mine site 802.14 0.07 

Settlement Settlement Settlement to Settlement 10147.86 0.90 

Settlement Sparse 

vegetation  

Settlement to Sparse 

vegetation  

198.95 0.02 

Mine site Water Mine site to Water 64.07 0.01 

Dense 

Vegetation 

Water Dense Vegetation to 

Water 

7 0.00 

Settlement Water Settlement to Water 1.13 0.00 

Sparse 

vegetation  

Water Sparse vegetation  to 

Water 

4.53 0.00 

Water Mine site Water to Mine site 11615.89 1.03 

Bare land Water Bare land to Water 21111.74 1.88 

Water Water Water to Water 14968.83 1.33 

Water Bare land Water to Bare land 116.04 0.01 

Water Sparse 

vegetation  

Water to Sparse 

vegetation  

100.35 0.01 

Water Settlement Water to Settlement 82.67 0.01 

Water Dense 

Vegetation 

Water to Dense 

Vegetation 

32.4 0.00 
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Figure 4.45: LULC Change detection histogram from 2021 to 2024 

The LULC change detection maps (Figures 4.42 and 4.44) show the areas that have changed 

from one LULC class to another. The change detection analysis reveals that the most significant 

changes are from dense vegetation to bare land and mine site, indicating that mining activities 

are driving deforestation and land degradation. 
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LULC change detection histogram (Figures 4.43 and 4.45) provides a quantitative summary of 

the LULC changes. The histogram confirms that the most significant changes are from dense 

vegetation to bare land and mine site. 

The LULC maps, statistics, and change detection analysis reveal a clear trend of changing 

LULC in the Betaré-Oya region from 2021 to 2024. The decrease in dense vegetation and the 

increase in bare land and mine site indicate that mining activities are having a significant 

impact on LULC. 

The observed changes in LULC are directly related to mining activities. The clearing of forests 

to access alluvial gold deposits results in a decrease in dense vegetation and an increase in bare 

land and mine site. The expansion of mining activities also leads to an increase in settlement 

areas, as people migrate to the region in search of employment opportunities. 

The findings are consistent with previous studies that have used LULC classification to assess 

environmental changes in mining-affected areas. For example, Kamga et al. (2017) found that 

mining activities were driving deforestation and land degradation in the Betaré-Oya region. 

The study also supports the findings of Singh et al. (2023), who found that mining activities 

were associated with increased levels of bare land and settlement areas. 

The observed changes in LULC have significant implications for sustainable development in 

the Betaré-Oya region. The loss of dense vegetation reduces the capacity of ecosystems to 

provide essential services, such as carbon sequestration, water regulation, and soil stabilization. 

The increase in bare land and mine site contributes to land degradation and reduces agricultural 

productivity. The expansion of settlement areas can lead to increased pressure on natural 

resources and social conflicts. 

4.5 Proposed Rehabilitation Strategies 

The increase in bare soil extent and the decrease in vegetation moisture content have significant 

implications for ecosystem services in the Betaré-Oya region. Bare soil is more susceptible to 

erosion, which can lead to sedimentation of water bodies and loss of soil fertility. Reduced 

vegetation moisture content can lead to increased fire risk and reduced carbon sequestration. 

The decline in vegetation health has significant implications for ecosystem services in the 

Betaré-Oya region. Vegetation plays a crucial role in carbon sequestration, water regulation, 

soil stabilization, and habitat provision. The loss of vegetation cover reduces the capacity of 

ecosystems to provide these services, potentially leading to further environmental degradation 

and economic losses. 
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The decline in water quality has significant implications for human health and ecosystems in 

the Betaré-Oya region. Contaminated water resources can pose a risk to human health through 

drinking water consumption and exposure to contaminated water during recreational activities. 

The increased turbidity and sediment load can also harm aquatic ecosystems by reducing light 

penetration and smothering aquatic habitats. 

Based on the remote sensing analysis, field observations, and literature review, the following 

rehabilitation strategies are proposed for the alluvial gold mining-affected areas in Betaré-Oya. 

Prioritization of Rehabilitation Areas 

 Prioritize areas with high BSI values, low NDMI and NDVI values, high TI and SSC 

values, and significant changes in LULC from dense vegetation to bare land or mine 

site. 

 Consider the proximity of mining sites to water bodies and settlements when prioritizing 

rehabilitation areas. 

Soil Stabilization and Erosion Control 

 Implement soil stabilization measures to reduce soil erosion and sedimentation. 

 Construct terraces on slopes to reduce the slope length and slow down water runoff. 

 Plow along the contour lines of the land to create ridges that trap water and reduce soil 

erosion. 

 Plant native grasses, shrubs, and trees to provide ground cover and stabilize the soil. 

 Apply organic mulch to the soil surface to reduce erosion and retain moisture. 

 Use geotextiles to stabilize slopes and prevent soil erosion. 

Reforestation and Revegetation 

 Reforest degraded areas with native tree species to restore vegetation cover and improve 

soil health. 

 Select tree species that are adapted to the local climate and soil conditions and that 

provide valuable ecosystem services, such as carbon sequestration and habitat provision. 

 Use a mix of tree species to increase biodiversity and resilience to disturbances. 

 Implement soil preparation techniques, such as adding organic matter and fertilizer, to 

improve soil fertility and promote plant growth. 

 Protect newly planted trees from grazing and fire. 
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Water Quality Improvement 

 Implement water treatment technologies to remove pollutants from contaminated water 

resources. 

 Construct artificial wetlands to filter pollutants from water and provide habitat for 

wildlife. 

 Use plants and microorganisms to remove pollutants from water and soil. 

 Construct sedimentation basins to trap sediment and reduce turbidity. 

 Use chemical treatment to remove heavy metals and other pollutants from water. 

Mine Pit Rehabilitation 

 Rehabilitate abandoned mine pits to reduce safety hazards and improve water quality. 

 Backfill mine pits with soil and rock to create a more stable and level surface. 

 Grade the surface of mine pits to improve drainage and reduce erosion. 

 Plant native vegetation on the surface of mine pits to stabilize the soil and provide 

habitat for wildlife. 

 Treat the water in mine pits to remove pollutants and improve water quality. 

Community Engagement and Alternative Livelihoods 

 Engage local communities in the planning and implementation of rehabilitation efforts. 

 Provide training and employment opportunities for local residents in rehabilitation 

activities. 

 Promote sustainable agriculture, ecotourism, and other alternative livelihood 

opportunities to reduce dependence on mining. 

 Educate local communities about the environmental impacts of mining and the 

importance of sustainable mining practices. 

Monitoring and Evaluation 

 Implement a long-term monitoring program to track the progress of rehabilitation 

efforts. 

 Adjust rehabilitation strategies as needed based on monitoring results. 

 Engage local communities in the monitoring and evaluation process. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

This study provides a comprehensive assessment of the environmental impacts of alluvial gold 

mining in the Betaré-Oya region of Cameroon from 2021 to 2025. The spatiotemporal analysis 

were performed from the year 2021 to 2024, while field observation and ground truthing was 

carried out in the early months of 2025 (January to March). The results reveal significant land 

degradation, declining vegetation health, deteriorating water quality, and changing land 

use/land cover patterns due to mining activities. 

Field observations and Google Earth Pro analysis revealed deforestation of the original forest 

cover lost in active mining areas. Soil erosion was widespread, with topsoil loss in active mining 

zones. Abandoned mining pits filled with stagnant water were a common sight, posing a risk to 

public health and aquatic ecosystems. 

Satellite image analysis using BSI, NDMI, NDVI, NDWI, TI, and SSC confirmed the trends 

observed in the field and Google Earth Pro analysis. The BSI results showed an increase in bare 

soil from 2021 to 2024, indicating a significant increase in land degradation. The NDMI results 

showed a decrease in vegetation moisture over the years, indicating a decline in vegetation 

health. The NDVI results showed a decrease in vegetation, further confirming the decline in 

vegetation health. The NDWI results indicated loss of water resources. The TI results showed 

an average increase in turbidity over the years while SSC showed an increase in sediment load, 

confirming the decline in water quality. 

LULC classification and change detection analysis revealed that mining activities are driving 

deforestation and land degradation, with significant changes from dense vegetation to bare land 

and mine site over the years. 

The different analyses (BSI, NDMI, NDVI, NDWI, TI, SSC, and LULC) complement each 

other to provide a comprehensive understanding of the environmental impacts of mining. The 

results show that mining activities are having a cascading effect on the environment, leading to 

land degradation, declining vegetation health, deteriorating water quality, and changing land 

use/land cover patterns. 

This study contributes to scientific knowledge by providing a comprehensive assessment of the 

environmental impacts of alluvial gold mining in the Betaré-Oya region. The study also 

demonstrates the value of remote sensing for monitoring environmental changes in mining-
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affected areas. The findings provide valuable information for policymakers, regulatory 

agencies, and environmental managers to design and enforce sustainable mining policies and 

develop effective mine closure and rehabilitation plans. 

5.2 Recommendation 

Implement stricter regulations on mining activities to minimize environmental impacts. This 

includes regulations on deforestation, topsoil removal, chemical use, and waste disposal. The 

regulations should be enforced through regular inspections and penalties for violations. 

Promote sustainable mining practices, such as the use of mercury-free gold extraction methods 

and the implementation of best management practices for soil erosion and sediment control. 

This can be achieved through education and training programs for miners and financial 

incentives for adopting sustainable practices. 

Develop and implement comprehensive mine closure and rehabilitation plans that are tailored 

to the specific environmental conditions of the Betaré-Oya region. The plans should include 

specific goals, timelines, and monitoring protocols. 

Enforce existing environmental regulations and hold mining companies accountable for their 

environmental impacts. This includes requiring mining companies to provide financial 

guarantees for rehabilitation costs and to pay for the cleanup of contaminated sites. 

Provide financial incentives for mining companies to implement sustainable mining practices 

and rehabilitate abandoned mine sites. This can be achieved through tax breaks, subsidies, and 

grants. 
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APPENDICES 

Appendix A: Graphical User interface (GUI) of the software used 

Figure A1: GUI SNAP 

 

 

Figure A2: GUI of ArcGIS 10.8 
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Figure A3: GUI of ENVI 

 

 

Figure A4: GUI of Microsoft Excel 

 


