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ABSTRACT

This study investigates the spatiotemporal environmental impacts of alluvial gold mining in the
Betaré-Oya, East Region of Cameroon from 2021 to 2025 using a mixed-methods approach
combining remote sensing analysis, field observations, and community interviews. Sentinel-2
satellite imagery was analyzed to assess land degradation (Bare Soil Index), vegetation health
(Normalized Difference Vegetation Index), water quality (Normalized Difference Water Index,
Turbidity Index, Suspended Sediment Concentration), and land use/land cover (LULC)
changes. Field observations (January to March, 2025) and Google Earth Pro imagery confirmed
extensive deforestation, soil erosion, and water pollution in mining-affected areas. The BSI
analysis revealed a significant increase in bare soil from 19.20% in 2021 to 38.23% in 2024.
NDMI analysis showed a slight increase in moisture-deficient areas (bare soil) from 16.54%
(2021) to 16.56% (2023) while greatly increases from16.56% in 2023 to 24.68% in 2024. LULC
classification indicated a decrease in dense vegetation and an increase in bare land and mine
site areas. The study proposes a comprehensive rehabilitation strategy based on these findings,
including soil stabilization, reforestation, water treatment, mine pit rehabilitation, community
engagement, and long-term monitoring. Policy recommendations include stricter regulations,
promotion of sustainable mining practices, and the establishment of a dedicated fund for mine
closure and rehabilitation. Future research should focus on long-term monitoring of
rehabilitation efforts, assessment of different rehabilitation techniques, and investigation of
socioeconomic impacts. The findings highlight the urgent need for comprehensive and
sustainable approaches to manage the environmental impacts of alluvial gold mining and ensure
the long-term well-being of local communities and ecosystems in the Betaré-Oya region.
Keywords: Spatiotemporal analysis, Environmental impact, Rehabilitation, Alluvial gold
mining, Betare-Oya,
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CHAPTER 1
INTRODUCTION

1.1 Background of study

Mining has been a significant economic activity worldwide, contributing to industrial
development, employment, and revenue generation (Hilson & Murck, 2000). However, its
environmental and socio-economic impacts have raised major concerns, particularly in
developing countries where regulation is weak (Weng et al., 2013). Among various forms of
mining, alluvial gold mining is one of the most prevalent in tropical regions, especially in
Africa, where semi-mechanized and artisanal small-scale miners extract gold from riverbeds
and floodplains (D’Souza, 2020).

Betaré-Oya, located in the East Region of Cameroon, has emerged as a hotspot for alluvial gold
mining due to its rich gold deposits (Ndjama et al., 2019). The mining industry in this region is
largely dominated by semi-mechanized and artisanal small-scale mining (ASM), which
provides livelihoods for thousands of people but also leads to severe environmental degradation,
including deforestation, soil erosion, biodiversity loss, and water pollution (Tetsopgang et al.,
2021). The lack of proper rehabilitation strategies has left abandoned mining sites exposed to
further degradation, affecting both the ecosystem and local communities (Kouamé et al., 2022).
The environmental impact of alluvial gold mining in Betaré-Oya is significant, particularly on
land degradation, water pollution, and biodiversity loss. Studies have shown that excessive
excavation of riverbanks leads to increased sedimentation, changes in river flow, and
destruction of aquatic habitats (Lindahl, 2014). Additionally, the use of mercury and cyanide in
alluvial gold concentration contaminates water sources, posing health risks to local populations
(Esdaile & Chalker, 2018).

The introduction of remote sensing technology has transformed the monitoring and assessment
of environmental changes caused by mining (Zhao & Han, 2018; Adamu & Lawal, 2019). It
offers timely and accurate data, enabling the analysis of spatial and temporal patterns of land
degradation, which is essential for developing effective rehabilitation strategies. Studies have
demonstrated the effectiveness of satellite imagery in detecting land use and land cover (LULC)
changes in mining areas (Zhou et al., 2017), providing critical insights for stakeholders to
implement informed management practices. In addition Multispectral and thermal imaging for

spatiotemporal analysis of mining impacts have widely been used in monitoring vegetation



health, and water quality over time, providing critical insights for rehabilitation planning (Jain
etal., 2021).

Despite the evident environmental degradation, mine closure and rehabilitation remain a major
challenge in many developing regions, including Betarée-Oya (UNEP, 2020; Barlas &
Funtowicz, 2021). Effective reclamation and restoration strategies involve reforestation, soil
remediation, and sustainable land-use planning (Miller et al., 2019; Smith & Watson, 2017).
The use of remote sensing technologies, particularly Sentinel-2 and Landsat data, enables
researchers to track vegetation recovery, soil erosion, and water contamination post-mining
(Gessner et al., 2015; Vega & Garcia-Ruiz, 2019).

Several studies have utilized remote sensing to map LULC changes resulting from alluvial gold
mining activities in Betaré-Oya. For example, research employing Landsat imagery from 1987
to 2017 revealed significant environmental transformations, such as increased human
settlements and expanded artisanal mining at the expense of vegetation cover (Kamga et al.,
2017). Another study using Sentinel-2 imagery from 2018 to 2022 by Azinwi et al. (2024)
highlighted the expansion of mining activities and their impact on local ecosystems. These
findings underscore the critical need for continuous monitoring and the development of
rehabilitation measures to mitigate environmental degradation.

Water quality assessments in Betaré-Oya have also indicated the adverse effects of mining
activities (Babut et al., 2019). Analyses of surface water have shown increased turbidity and
elevated concentrations of heavy metals, including mercury, which pose risks to aquatic life
and human health (Chica & Walker, 2020). Additionally, studies have reported mercury
contamination in sediments and fish, raising concerns about bioaccumulation and the potential
health implications for local communities (Diop & Kamara, 2018).

Despite these insights, there remains a gap in research that integrates spatiotemporal analysis
with rehabilitation efforts in the Betaré-Oya region. Existing studies have primarily focused on
mapping changes without exploring the temporal dynamics of degradation or proposing
concrete rehabilitation strategies. Addressing this gap is essential for developing comprehensive
approaches to environmental management and restoration in mining-affected areas. Given these
concerns, this study aims to conduct a spatiotemporal analysis of the land degradation, water
quality, land use changes, and vegetation health in Betaré-Oya’s mining-affected areas from
2021 to 2025. The research will integrate multispectral and thermal remote sensing techniques

to assess environmental changes and propose strategies for effective mine rehabilitation.



1.2 Statement of the Problem

Alluvial gold mining has become a major economic activity in Betaré-Oya, East Cameroon,
attracting both artisanal small-scale miners (ASM) and large mining companies. While this
sector provides employment and contributes to the local economy, it also results in severe
environmental degradation, including land degradation, deforestation, water pollution, and
biodiversity loss. The uncontrolled expansion of mining activities, coupled with poor regulatory
enforcement, has led to the abandonment of numerous mined-out sites without proper
rehabilitation.

One of the most pressing environmental issues in Betaré-Oya is water pollution, as mining
operations involve the direct discharge of sediments, heavy metals, and chemicals into rivers
and streams. The use of mercury in gold extraction further exacerbates contamination, posing
serious health risks to both miners and local communities who depend on these water sources
for drinking, fishing, and agriculture.

Additionally, the region experiences rapid land cover changes, with vast areas of forest and
farmland being converted into barren mining landscapes. Vegetation loss disrupts local
ecosystems, reduces soil fertility, and increases erosion and flooding risks. Despite the clear
evidence of environmental damage, rehabilitation efforts remain inadequate, and no
comprehensive spatiotemporal analysis has been conducted to track environmental degradation
and propose effective rehabilitation strategies. The lack of reliable environmental monitoring
tools further hinders sustainable mining practices in the region. Traditional field-based
assessments are costly, time-consuming, and geographically limited, making it difficult to
obtain accurate and timely information on the environmental impacts of mining activities.

1.3 Research Objective

1.3.1 Main Research Objective

The main objective of this study is to conduct a spatiotemporal analysis of alluvial gold mining-
affected areas in Betaré-Oya, Cameroon from 2021 to 2025 using multispectral and thermal
remote sensing to assess land degradation, water quality, land use/land cover (LULC) changes,
and vegetation health, while proposing a strategy for effective mine closure and rehabilitation.
1.3.2 Specific Research Objectives

1. Assess land degradation in alluvial gold mining-affected areas of Betaré-Oya from field-

based assessment and satellite imagery analysis.



2. Examine vegetation health trends in the study area using multispectral and thermal remote
sensing index (NDVI).

3. Analyze water quality changes in mining-impacted rivers and streams by integrating
spectral indices and remote sensing data.

4. Monitor land use/land cover (LULC) changes for evaluating rehabilitation efforts
implemented over time.

5. Propose effective mine closure and rehabilitation strategies based on the findings.

1.4 Research Questions

1.4.1 Main Research Question

How has alluvial gold mining affected land degradation, water quality, land use/land cover

(LULC), and vegetation health in Betaré-Oya, Cameroon, from 2021 to 2025, and what

strategies can be proposed for mine closure and rehabilitation?

1.4.2 Specific Research Questions

1. What is the extent of land degradation caused by alluvial gold mining in Betaré-Oya over
the study period?

2. What are the trends in vegetation health, and how does mining impact ecosystem recovery?

3. How has water quality changed in mining-impacted rivers and streams, and what pollutants
are present?

4. What are the spatiotemporal land use/land cover changes, and have there been any efforts
of ongoing rehabilitation measures?

5. What mine closure and rehabilitation strategies can be implemented to restore degraded
mining areas?

1.5 Significance of the Study

This research is significant in several ways, contributing to both scientific knowledge and

policy-making for sustainable mining practices in Betare-Oya, Cameroon.

1.5.1 Contribution to Environmental Monitoring and Remote Sensing Applications

The study employs multispectral and thermal remote sensing for spatiotemporal analysis,

providing a scientific basis for monitoring environmental changes in mining-affected areas. By

integrating Sentinel satellite data with GIS-based analysis, this research enhances existing

methods for detecting land degradation, water pollution, and vegetation loss (Gimeno & Pérez,

2020).



1.5.2 Policy Implications for Sustainable Mining

The findings will offer data-driven insights to policymakers, regulatory agencies, and
environmental managers to design and enforce sustainable mining policies. Identifying critical
environmental risks will enable authorities to develop rehabilitation guidelines and enforce
responsible mining practices.

1.5.3 Contribution to Mine Closure and Rehabilitation Strategies

By analyzing the effectiveness of past and present mine closure strategies, this study will
propose evidence-based rehabilitation techniques for abandoned mining sites. This is essential
for restoring soil fertility, vegetation cover, and water quality to pre-mining conditions.

1.5.4 Socioeconomic and Community Benefits

Mining communities in Betaré-Oya face serious environmental and health risks due to exposure
to mercury, sedimentation, and deforestation (Esdaile & Chalker, 2018; Babut et al., 2019). By
assessing water quality and land degradation trends, this study will provide critical information
to local governments, NGOs, and community leaders on the need for environmental restoration
efforts and alternative sustainable livelihoods for affected populations.

1.6 Scope and Limitations of the Study

1.6.1 Scope of the Study

This study focuses on spatiotemporal analysis of alluvial gold mining-affected areas in Betaré-
Oya, Cameroon, from 2021 to 2025 using multispectral and thermal remote sensing data. The
research assesses land degradation, water quality, land use/land cover (LULC) changes, and
vegetation health while proposing strategies for mine closure and rehabilitation.

e Geographical Scope: The study area is Betaré-Oya, located in the East Region of
Cameroon, a significant hub for semi-mechanized and artisanal small-scale gold mining
(ASGM).

e Temporal Scope: The analysis covers a five-year period (2021-2025) to detect
environmental trends and impacts.

e Thematic Scope: The research integrates remote sensing data (Sentinel multispectral
and thermal imagery) and GIS tools (SNAP, ArcGIS, Google Earth Pro and Google
earth engine) to analyze environmental changes and propose sustainable rehabilitation
strategies.

1.6.2 Limitations of the Study

Despite its broad analytical scope, the study has some limitations:



e Cloud Cover Issues: The presence of persistent cloud cover in Betaré-Oya may
obstruct satellite image acquisition, particularly for optical remote sensing.

e Data Availability Constraints: The study relies on publicly available Sentinel data,
which may have spatial and temporal resolution limitations.

e Field Validation Challenges: While remote sensing techniques are effective, ground
truthing (field data collection) is necessary to validate findings, which may be
constrained by accessibility to all the mining-affected areas, and logistical challenges.

e Uncertainty in Water Quality Assessment: The use of remote sensing indices for
water quality assessment may require supplementary in-situ water sampling for
enhanced accuracy.

1.7 Study Area Description
Betaré-Oya is a key alluvial gold mining area located in the East Region of Cameroon. The area
has been a major alluvial gold mining district for decades, contributing to land degradation,

deforestation, and water pollution.
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1.7.1 Geographical Location
Betaré-Oya is situated at approximately latitude 14°1'0.643"E and longitude 5°42'48.587"N
(figure 1.1) in the Lom-et-Djerem Division of Cameroon’s East Region. It is bordered by
Ngoura, Belabo, and Garoua-Boulai and lies along the Lom River, a major water source that is
heavily impacted by gold mining activities (Ndjigui et al., 2021).
1.7.2 Ethnic Groups and Population
The population of Betaré-Oya is diverse, with the Gbaya, Beti, and Baka ethnic groups being
predominant. The Gbaya people, who are primarily agriculturalists and traders, form the largest
community. The region also hosts migrant workers from other parts of Cameroon and
neighboring countries who engage in artisanal mining (Tchindjang et al., 2018).
1.7.3 Climate and Rainfall Patterns
Betaré-Oya experiences a tropical humid climate with two major seasons:
Rainy Season: Extends from March to October, with peak rainfall occurring in July and
September. Annual precipitation ranges between 1,500-2,000 mm (Yemefack et al., 2019).
Dry Season: Runs from November to February, characterized by hot temperatures (28°C—35°C)
and reduced river flow, which influences mining activities.
1.7.4 Vegetation and Land Cover
The natural vegetation of Betaré-Oya consists of dense semi-deciduous forests, but extensive
deforestation has occurred due to gold mining, agriculture, and logging (Sonwa et al., 2020).
The main vegetation types include: Gallery forests along rivers and wetlands; Savannah
woodlands in degraded mining zones; Farmland and secondary forests due to shifting
cultivation
1.7.5 Socioeconomic Activities
The economy of Betaré-Oya is driven by artisanal gold mining, which employs thousands of
miners. Other key activities include:

e Subsistence agriculture: Crops such as cassava, maize, and groundnuts are cultivated.

e Fishing: The Lom River provides fish but is heavily impacted by sedimentation from

mining.
e Timber extraction: Logging companies operate in the region, contributing to forest

degradation.



Gold mining has significantly altered the landscape and livelihoods of the local population,
leading to environmental challenges such as deforestation, soil erosion, and water pollution
(Tchindjang et al., 2018).

1.8 Definition of Terms

This section defines key terms and concepts used in the study to ensure clarity and consistency.
1.8.1 Spatiotemporal Analysis

Spatiotemporal analysis refers to the study of how spatial patterns change over time. In the
context of this research, it involves the assessment of environmental changes (land degradation,
water quality, and vegetation health) in Betaré-Oya over the period 2021-2025 using remote
sensing and GIS techniques (Fisher et al., 2018; Wang & Liu, 2020).

1.8.2 Alluvial Gold Mining

Alluvial gold mining is the extraction of gold particles from riverbeds, floodplains, or sediments
using manual or mechanized techniques. This process often leads to deforestation, riverbank
erosion, and water pollution due to the release of mercury, sediments, and other contaminants
(Aryee et al., 2003).

1.8.3 Remote Sensing

Remote sensing is the process of collecting information about the Earth’s surface without direct
contact, using sensors on satellites, drones, or aircraft. This study uses multispectral and thermal
remote sensing to detect land degradation, vegetation changes, and water quality variations in
mining-affected areas (Jensen, 2015).

1.8.4 Multispectral and Thermal Remote Sensing

Multispectral remote sensing captures reflected electromagnetic radiation in multiple
wavelengths (visible, near-infrared, and shortwave infrared) to analyze land cover, vegetation
health, and water bodies (Xie et al., 2008).

Thermal remote sensing detects land surface temperature (LST) variations, which can indicate
soil moisture changes, mine-induced heat anomalies, and vegetation stress (Voogt & Oke,
2003).

1.8.5 Land Degradation

Land degradation refers to the deterioration of soil, vegetation, and water resources due to
human activities such as mining, deforestation, and poor land management (He & Zhang, 2020).
In Betaré-Oya, land degradation results from artisanal gold mining, which strips vegetation,

causes erosion, and alters river courses (Lambin et al., 2001).



1.8.6 Land Use/Land Cover (LULC)

LULC refers to the classification of land based on its usage and physical cover. Land use
includes agriculture, settlements, and mining, while land cover consists of forests, grasslands,
and water bodies (Foody, 2002). Satellite imagery is used to analyze LULC changes over time.
1.8.7 Normalized Difference Vegetation Index (NDVI)

NDVI is a satellite-derived index used to measure vegetation health and biomass. It is calculated
as: NDVI = (NIR - RED) / (NIR + RED). Where NIR (near-infrared) and RED are reflectance
values from satellite imagery. Higher NDVI values indicate healthy vegetation, while lower
values suggest land degradation or deforestation (Tucker, 1979).

1.8.8 Normalized Difference Water Index (NDWI)

NDWI is used to detect water bodies and moisture content in an area. It is calculated as: NDWI
= (GREEN - NIR) / (GREEN + NIR) Higher NDW!1 values indicate water presence, while lower
values suggest dry conditions or contamination (McFeeters, 1996).

1.8.9 Mine Closure and Rehabilitation

Mine closure refers to the process of shutting down mining operations in a way that minimizes
environmental and social impacts (Laurence, 2006).

Rehabilitation involves restoring degraded mining sites through revegetation, soil stabilization,
and water treatment to ensure ecological recovery.

1.8.10 Water Quality Indicators

Water quality is assessed using physical, chemical, and biological parameters, including:

Turbidity (suspended sediments)

Dissolved oxygen (DO) levels

Heavy metal concentrations (e.g., mercury, arsenic)

pH and conductivity

Remote sensing techniques such as NDW!I and spectral analysis can help monitor water
contamination in mining-affected rivers (Gholizadeh et al., 2016).

1.9 Organization of the Study

This dissertation is structured into five main chapters, each addressing different aspects of the
research. Below is an overview of the content covered in each chapter:

Chapter 1: This chapter provides the background of the study, highlighting the impact of alluvial
gold mining on the environment and the need for spatiotemporal analysis using remote sensing.

It outlines the research problem, objectives, research questions, significance, scope, and



limitations of the study. Additionally, it provides a detailed description of the study area and
defines key terms used in the research.

Chapter 2: This chapter reviews previous studies on alluvial gold mining and its environmental
impact, with a focus on land degradation, water quality, and vegetation health. It also explores
existing remote sensing techniques (multispectral, thermal, radar) used for monitoring mining
activities, alongside past research conducted in Betaré-Oya and other mining-affected regions.
Chapter 3: This chapter outlines the research design, data sources, and analytical methods used
in the study. It provides details on: The satellite datasets (Sentinel, Landsat) used for monitoring
environmental changes. Spatiotemporal analysis techniques employed to assess land
degradation, water quality, and vegetation health. The application of SNAP tool, Google Earth
Pro, Google Earth engine and ArcGIS for image processing, classification, and change
detection. Validation techniques, including field data collection and accuracy assessment of
classified images.

Chapter 4:This chapter presents the findings of the study, including: Spatiotemporal trends in
land use/land cover changes (deforestation, expansion of mining pits).Water quality analysis
using spectral indices (NDW!I, BSI) and field validation. Vegetation health assessment using
NDVI. Impacts of mining on soil degradation and temperature anomalies based on thermal
remote sensing. A discussion on the implications of the findings for environmental management
and policy-making.

Chapter 5: The final chapter summarizes the key findings, highlights the study’s contribution
to knowledge, and suggests strategies for rehabilitating abandoned mining sites. It also outlines
recommendations for future research on sustainable mining practices and environmental

restoration in Betaré-Oya.
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CHAPTER 2
LITERATURE REVIEW

2.1 Geological potential of Cameroon

Cameroon is underlain by Precambrian rocks, Cretaceous sediments, and Cenozoic sedimentary
and volcanic formations. Much of the Precambrian is undifferentiated gneisses and migmatites.
Meso- and Neoproterozoic rocks are exposed in the southeast of the country. Cretaceous
sediments almost completely cover the Precambrian basement (Belinga, 2001). In northern
Cameroon the Cretaceous sedimentary facies is mainly continental, while the Cretaceous in the
coastal zone is mainly marine. A recent volcanic zone crosses Cameroon in a north-easterly
direction. This line probably follows an important ancient structural zone. Finally, in the south
of the country we have the Ntem group, which is the only area where archaic rocks are found,
the most important being granites, gneisses and charnockites (Schluter, 2006).

The ore minerals present in the country are mainly: gold, diamond, bauxite, kyanite and rutile,
tin, and cobalt. Gold deposits are found throughout the country, especially in the crystalline
basement and epimetamorphic sequences. The highest concentrations are found in the east of
the country, essentially along the borders with the Central African Republic and Chad. In this
area, its association with the process of microcline formation with the base rock has been
observed (Kamga et al., 2017). The same occurs for the extreme south, the north (Poli series)
and the center (Lom series), based on the Congolese region, formed by a volcanic-sedimentary
environment, and, finally in the west of the country, where rocks are found as mostly intrusive.
The diamonds are associated with the Cretaceous fluviolacustrine formations of the "Series de
Carnot", near the border with the Central African Republic and exploited using artisanal
methods, although they are also associated with gold alluvium (Bakia, 2014). The Carnot series
is composed of sandstones of Mesozoic age and fluvial origin that, in more recent deposit
environments, could also have included lacustrine and marsh deposits from one end to the other
(Delpomdor & Préat, 2015). Consequently, the Carnot sandstone includes various evolutionary
levels of agglomerates, sandstone, argillite, and siltstones. The geomorphology of the present
landscape is an important factor in the location and quality of diamond deposits that are exposed
due to erosion (Chirico et al., 2010). Cassiterite occurs in a small deposit at Mayo Darlé in the
northwest, near the Nigerian border. The mineralization occurs as porphyry-type stockwork
veinlets with grades up to 0.3% SnO> and as vertical and horizontal high-grade (2-20% SnO)

greisen veins within host alkali biotite granites, it is defined as alluvial cassiterite (Nwamba et
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al., 2023). Economic concentration of nickel and cobalt appear in the east of the country, near
Lomie in a small town called Nkamouna.The ore are associated with laterites and serpentine
type rocks (Lambiv Dzemua et al., 2012). The feasibility report for the Nkamouna project has
been submitted in 2011 by SRK Consulting, Knight Piésold, but to date no facility infrastructure
are build (Africa Intelligence, 2022).Rutile is found in economical quantities at Akonolinga and
is associated with micabearing schists, it depends of the Yaoundé series. The occurrence of
rutile in the region east of Yaoundé (Nanga-Eboko and Akonolinga) and west of Yaoundé
(Eseka-Pouma) is known in alluvial, eluvial and residual deposits since the last century. The
rutile was exploited between 1935 and 1955 with a total production of 15,000 tons. The rutile
is of high quality (>95% TiO2) and occurs in various sizes (up to 5 cm of diameter) (Stendal,
2006).

2.2 Geology of the East Region

The East Region of Cameroon is characterized by a complex geological framework that
includes Precambrian basement rocks, metamorphic formations, and mineral-rich belts. This
region is known for its significant mineral resources, including gold, diamonds, and other
valuable minerals, making it an important area for geological studies (Tchameni et al., 2006).
The East Region of Cameroon is predominantly part of the Central African Orogenic Belt
(CAOB), which is composed mainly of Archean to Proterozoic rocks. The region features high-
grade metamorphic rocks, granitoids, and supracrustal sequences (Nzenti et al., 1998). These
geological formations are a result of multiple tectonic events, including the Pan-African
orogeny.

The lithology of the East Region is dominated by Precambrian basement rocks, including
gneisses, schists, and granites. The metasedimentary sequences contain quartzites,
amphibolites, and migmatites, indicative of high-grade metamorphic processes (Toteu et al.,
2004). The presence of greenstone belts also suggests potential for economic mineralization.
The structural framework of the East Region is controlled by Pan-African tectonics, leading to
intense folding, faulting, and shearing. Major fault systems, including the Sanaga and Lom
faults, influence the region's geological architecture (Ngako et al., 2003). These structures play
a critical role in the emplacement of mineral deposits.

The East Region is one of Cameroon's richest in terms of mineral resources. Gold deposits are
widespread, with artisanal and Semi-mechanized mining being the primary extraction method.

Diamond occurrences are also common in alluvial deposits along major river systems (Yongue-
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Fouateu et al., 2006). Other resources include bauxite and iron ore, which are yet to be fully
exploited.

2.3. Overview of Betare-oya

Betare Oya is found in the East region of Cameroon in the Lom and Djerem Division. The area
is characterized by two main hydrographic basins namely; Lom basin in the North West and
Kadei basin in the South East. The geology of Betare Oya is dominated by volcano-sedimentary
rocks of Neoproterozoic in the Lom metamorphize group (Eloung et al.,2020).

The climate is equatorial type with four seasons (2 dry seasons and 2 rainy seasons) with some
variations which are particular to them due to the location at the foot of the Adamawa plateau.
Humidity and cloud cover are relatively high and precipitation ranges from 1500 to 2000mm
per year except in the extreme east and North regions where it is slightly less.

The Betare-Oya gold districts are watered by two main rivers: The Lom and the Pangar. These
2 rivers receive water from a large network of small rivers, the most important of which are
Mba, Mari, Mbal, and Kpawara. The hydrologic regime of the river Lom in Betare-Oya is
controlled by rainfall. The lower monthly flow rate is observed in February (56m>s™), while the
maximum flow rate is observed in October (328m?s!) (Ngueyep et al., 2020).

The vegetation is dominantly of primary nature comprising of lowland tropical rainforest, which
grows progressively thicker towards the south. The land area is sparsely cultivated and most of
the natural vegetation is still intact (Manga et al., 2017).

The people of Betare Oya region heavily rely on artisanal gold mining for their livelihoods. It
is a key source of income, often more lucrative than other local options, and a tradition passed
through generations. This strong dependence stems from limited alternative employment and
the relatively easy entry into this form of mining (Funoh, 2014).

2.4 Alluvial gold

Gold has been a valuable and sought-after metal for centuries. Alluvial gold refers to gold
deposits formed by the erosional processes of rivers and streams, transporting and concentrating
gold in riverbeds, floodplains, and deltas (Smith et al., 2020). These deposits have been an
essential source of gold throughout history, supporting artisanal and large-scale mining
activities (Johnson & Clark, 2019). Alluvial gold mining has played a crucial role in the

economies of many gold-producing regions.
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The process of alluvial gold formation is influenced by a combination of geological,
hydrological, and environmental factors. Understanding these processes is essential for
effective exploration and sustainable mining.
2.4.1 Geological processes of formation
Alluvial gold formation is primarily driven by the weathering and erosion of primary gold
sources, such as quartz veins within hard rock deposits (Brown & Taylor, 2018). Over time,
mechanical and chemical weathering release gold particles, which are transported by water and
deposited based on size, shape, and weight (Williams, 2021). The movement of gold is
influenced by factors such as river gradient, water velocity, and sediment load.
As gold-bearing rocks are exposed to weathering, gold particles are freed and carried by surface
water to lower elevations. The process involves oxidation, dissolution, and mechanical
breakdown, which lead to the separation of gold from its host minerals. Over extended periods,
these particles accumulate in areas of reduced water flow, forming placer deposits (Harrison &
Green, 2020).
2.4.2 Characteristics and occurrence
Alluvial gold is commonly found as flakes, nuggets, or dust, with its size and purity depending
on the distance traveled from the primary source (Anderson, 2022). The physical properties of
gold, such as its high density and malleability, influence its deposition in riverbeds and
floodplains.
Deposits are classified based on their location and mode of formation sediments (Taylor et al.,
2017).Common types include:

e Eluvial Deposits: Found close to the primary source, formed due to in-situ weathering.

e Colluvial Deposits: Occur on hill slopes, transported by gravity and short-distance

runoff.

e Alluvial Deposits: Found in active river channels, terraces, and floodplains.

e Paleo-Placer Deposits: Ancient alluvial deposits buried under later
Alluvial gold deposits are widely distributed across different geographical regions. Major
alluvial gold fields are found in Australia, Canada, Ghana, and Brazil, where extensive placer
mining operations have been carried out for decades (Wilson, 2020). The presence of gold in

these regions is closely linked to tectonic activities and past glacial movements.

14



2.4.3 Exploration techniques
The exploration of alluvial gold deposits requires a combination of geological, geophysical, and
geochemical techniques to identify promising locations (Martinez & Lopez, 2018). Traditional
methods include panning and trenching, while modern exploration utilizes remote sensing,
geophysical surveys, and borehole sampling (Lewis & Scott, 2023).
Some of the commonly used exploration techniques include:
e Panning: A simple method used by prospectors to identify gold concentrations in river
sediments.
e Geophysical Surveys: Methods such as ground-penetrating radar (GPR) and electrical
resistivity help map subsurface deposits.
e Sediment Sampling: Collecting and analyzing stream sediments to detect gold
anomalies.
e Drilling and Bulk Sampling: Used for resource estimation in larger mining
operations (Patterson et al., 2021).
2.5 Alluvial gold mining
Alluvial gold mining, a practice dating back to ancient civilizations, remains a globally
significant method for gold extraction (Mathioudakis et al., 2023). While employed worldwide,
it is particularly prevalent in developing countries, where artisanal and small-scale gold mining
serves as a crucial economic driver for local communities (NOVAFRICA, 2023). This reliance
on artisanal small scale gold mining, however carries substantial environmental consequences.
The often-informal nature of these mining operations contributes significantly to habitat
destruction, water pollution and critically, widespread mercury contamination (Mathioudakis et
al., 2023). The gold extracted through ASGM enters global markets, linking these local
environmental challenges to international supply chains, thereby highlighting the need to
sustainable practice and responsible practices and responsible resource management on a global
scale (Funoh, 2014).
2.5.1 Alluvial gold mining in Africa
Gold mining in the African continent began as early as the 5™ century, with Mali and Ghana
being the main producers of the precious metal, known in Europe as the “Gold Coast”. Up until
the 18™ century, gold bars and coins were the primary exports of African states, supplying them
to mediterranean countries where gold served as the main currency. Today, ASGM remains a

crucial livelihood source for millions, particularly in countries like Ghana, Mali, DRC. These
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operations, often informal, utilize basic techniques and equipment, contributing significantly to
local economies.

However, this economic activity comes with severe environmental and social consequences.
ASGM leads to appropriation of the land belonging to the local communities, impacts on health,
alteration of social relationships, destruction of forms of community subsistence and life, social
disintegration, radical and abrupt changes in regional cultures, displacement of other present
and/or future local economic activities. All these have added to the hazardous and unhealthy
working conditions of this type of activity.

The economic benefits of ASGM, while undeniable, must be balanced against its detrimental
impacts. Sustainable practices are essential to mitigate these negative effects and ensure long
term benefits. This requires international cooperation, responsible sourcing initiatives and the
implementation of effective regulatory frameworks. Efforts to formalize ASGM, provide miners
with safer technologies, and promote environmental awareness are crucial steps. Ultimately, a
holistic approach that acknowledges the complex interplay of history, economics, and
environment is necessary to address the challenges of alluvial gold mining in Africa and ensure
a more sustainable future for the continent (Eloung et al.,2020).

2.5.2 Alluvial Gold concentration methods

The methods considered mainly involve the physical separation of gold from 'gangue’ (which
ranges from vein material in bed-rock deposits to sand and silt grade material in alluvial
deposits) using gravity-based processing methods. Gold has a high specific gravity (19.3 g/cm3)
in relation to most common gangue minerals (ranging from 2.65 to 3 g/cm3) and is therefore
eminently suitable for gravity processing. Considering the minute quantity of gold normally
present in even the most auriferous ores (down to | g/tone in bed-rock and 0.25 g/tone in alluvial
deposits) gravity processing is virtually the only method effective at producing the
concentration ratios required, especially with the high volume throughputs associated with
alluvial mining.

It should be noted that recovery data are specific to particle-size, ore nature and processing
operation. Certain gold grain characteristics influence the efficiency of gold recovery methods,
particularly gravity separation. The influence of density upon the behaviour of a gold grain will
lessen as the surface area to mass ratio increases. Gold is usually nonspherical, and it is typically
flakier with decreasing grain size. This is mainly due to the malleability of gold, distorting rather

than fracturing in response to loading and impact (during crushing and grinding of the ore, and
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alluvial transport). This irregular shape leads to porosity; cavities and pores are often infilled
with lower density material lowering the density of the composite particle (Wang & Poling,
1983).
The flaky shape, porosity and hydrophobic surface properties often cause gold to float. This is
especially a problem for fine grained gold. Gold grain surfaces are often coated with an
hydrophobic organic layer or iron oxide coatings and some are leached free of impurities (such
as silver) leaving a rim of pure gold, all of these render the surface hydrophobic (Wang &
Poling, 1983). The mineralogical character of the gold is often not considered when planning a
processing plant, especially if the gold responds well to standard gravity and cyanidation
processes. However, if the gold recovery is poor (430%) the ore is termed “refractory” and a
detailed mineralogical investigation becomes necessary. This will involve the determination of
the mode of occurrence of minute gold grains and the proportion of “invisible” gold. Gold
usually occurs as “native gold”. A solid solution exists with many heavy metals including
electrum (Au, Ag), argentian gold (Au, Ag), cuprian gold (Au, Cu), palladian gold (Au, Pd),
mercurian gold (amalgam) (Au, Hg) and Au-Ag-Hg alloy. Other gold-bearing minerals occur
only in very small amounts including gold tellurides, gold selenides, gold sulphides and
intermetallic compounds such as amalgam (Au, Hg), aurostilbite (Au, Sb) and maldonite (Au,
Si) (Petruk, 1989).

e Panning
Panning uses water to separate heavy gold particles from other lighter particles within a medium
sized pan. In this process sediment or ore thought to contain gold is placed in a wide, curved
pan along with water. The miner moves the pan in a series of motions designed to eject lighter
sediments. The density of gold keeps it on the bottom of the pan as lighter material is ejected
along with water. After a series of successful iterations have been completed, gold will be
exposed on the bottom of the pan for the miner to recover.
Panning works best when gold is coarse and well liberated. Under right conditions, panning can
produce high grade concentrates or even liberated gold. Then miners can employ gold recover
methods such as direct smelting, although many panning operations lead to directly recoverable
gold.
Panning offers miners a low cost method of gravity concentration but it requires time and skill

to be effective. One of the major drawbacks to panning is that miners must pan small amounts
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of concentrate. Therefore, panning is often done after other methods of gravity concentration

such as sluicing have completed.

Figure 2.1: Panning Process

e Sluicing

Sluices use water to wash ore or alluvium down a series of angled platforms. As water washes
sediment down a sluice, gold particles sink and are captured by material covering the bottom of
the sluice, often carpets. Sluices are usually inclined at 5 to 15 degree angle. As moving water
travels down a sluice, it generates greater force and keeps gold particles from sinking easily.
For this reason most gold is captured at the beginning of the sluice. Carpets or other capturing
devices on the bottom of sluices can be removed and washed in a bucket to remove the captured
dense material. Sluice design can lead to higher gold recovery if the force of the water traveling
through the sluice is decreased. A series of rifles can help break the flow to improve recovery.
A zig zag sluice also achieves this by creating a drop between the first and second platform that
disrupts the velocity of the water as it travels down the sluice (Martins et al, 1993).

A simpler alternative to the zig zag sluice is a combination of two sluice surfaces. The first is
tilted at a steeper angle then the second, decreasing the velocity of the water as it hits the second
sluice, increasing gold recovery. Sluices can be relatively expensive or affordable depending
on the complexity of their design. Simple sluices can be a single angled platform a few feet in
length and others can be very elaborate. Having an available and consistent water supply is

necessary to have a functioning sluice operation. This can be done with piping, drums, buckets,
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or natural flowing water bodies. A constant flow will be better than a bucket-driven flow.
Sluices are good at concentrating large amounts of ore and sediment in a relatively short time
but often do not yield concentrates with high amounts of gold. The resulting concentrate must
usually undergo further methods of concentration, such as panning (Martins et al, 1993).

Figure 2.2: Sluicing Process

e Shaking Table

Shaking tables are elevated tables tilted to one side with raised ridges running horizontally down
their length. Mineral feed (crushed ore or sediment) and water are released at one end of the
table. The water washes the feed down the table. As the material is washed down the table,
specialized grooves trap gold and direct it to collection points on the side of the table as lighter
minerals are washed away. During this process, the table is continually shaken by a motor to
agitate the material and aid in the separation of gold particles. Shaking tables are very effective
and can concentrate sizeable amounts of ore at a time, providing high grade concentrates and
liberated gold, but they are also relatively expensive and require some experience to operate.

The commonest form of shaking table used is the wet table (the 'dry’ form is known as an air
table, which uses air as the fluid separating medium). It consists of a flat table (or 'deck’) with
parallel riffles to trap the heavy minerals. The 'deck’ is vibrated longitudinally and inclined
laterally during operation. Perforated pipe feeds wash water from the upslope side. The slurries
feed is introduced at the top upslope corner, minerals in the feed segregate. The heavy minerals
sink to the deck, migrate along the riffles and are discharged over the end of the deck. The light

minerals, entrained in the water, pass straight over the riffles and down to the bottom and so to
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the tailings. Shaking tables are effective in the processing of Aerial in the size range 3 mm to
15 pm. Shaking tables have been used to recover 88% of the gold present in a concentrate
produced on a spiral (Eltham, 1984).

Wang & Poling (1983) record that up to 90% of gold coarser than 40 pm can be recovered,
whereas typically only 20% of 20 - 40 pm gold can be recovered. The efficiency drops greatly
below 40 pm. The following table gives the size distribution of gold present in a shaking table
middling product from a commercial mine in Malaysia i.e. material that had passed over the
table and was stockpiled for possible later reprocessing. Estimated assay of around 10 tons is
higher than the mined ore. There is considerable scope for increased yield with more effective
processing. Particle-size distribution of gold in a middling product from a gold mine in

Malaysia

Figure 2.3: Shaking table

e Spiral Concentrators
The spiral concentrator is described as a 'low feed rate, low feed density' flowing film gravity
separators. It consists of a helical conduit of modified semi-circular cross-section, usually with
between 3 and 5 complete ‘turns' (Wills, 1992). Material is fed onto the top of the spiral as a
slurry with typically 25 to 30% solids by weight. As the material flows spirally downwards
the particles stratify due to factors such as centrifugal force, differential settling, hindered
settling and reverse classification. There is usually a density gradation across the profile of the

spiral with heavy minerals concentrating next to the axis and minerals of lower density being
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swept to the outer edge. Concentrate, middling and tailing products are collected with the use
of adjustable splitter plates

Spirals are effective in the processing of material in the size range 3 mm to 75 pm (although
up to 5 % 'slimes' can be tolerated with sufficient wash water). Spiral performance is
controlled by: the diameter and pitch of the spiral; the pulp density (i.e. the solids content of
the slurry); the location of the splitters and take-off points; and, the volume and pressure of
wash water. In one operation hydrocyclones are used to deslime (removing particles nominally
finer than 30 pm in this case) the feed to spirals (only rejecting gold finer than 14 pm) and this
leads to spiral recoveries of up to 65% (Eltham, 1984). At New Celebration gold mine in
Western Australia a series of rougher (producing gold pre-concentrates) and cleaner
(removing impurities from gold concentrates) spirals consistently achieve gold recoveries of
70 to 80% (Martins et al, 1993). Spirals are also known to be used for the recovery of fine flat
free gold (recoveries up to 85%) and gold finer than 37 pm (recoveries up to 50%) (Feree,
1993).

Figure 2.4: Spiral concentrator
e Bowl Concentrator

A bowl concentrator consists of a rotating cylinder that segregates heavy minerals from light
minerals by a combination of centrifugal force and wash water action. The Knelson bowl
concentrator claimed to recover "gold particles ranging from 6 mm to less than one micron in

asingle pass” (sales brochure). Recovery is effective down to approximately 30 pm. Typically
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Knelson concentrators have been retrofitted to process flotation tailings to recover gold
coarser than 100 pm and also to replace mineral jigs as a means of recovering coarse gold
ahead of flotation and cyanidation. A fully-automated Knelson concentrator was installed at
the Dome Mine, South Porcupine, and Ontario in replacement for a jig circuit and exceeded
jig gold recovery using only a tenth of the volume of jig feed (Brewis, 1995).

A similar concentrator was installed at the Golden Giant mine in north central Ontario which,
accompanied by a single stage of tabling, accounted for up to 30% of the overall gold recovery.
This was free-gold recovered directly from the grinding circuit prior to cyanidation (Brewis,
1995). Removal of coarser free gold ahead of cyanidation leads to savings from lowered
carbon stripping (recovery of gold from solution) and a consequent reduction in the use of
cyanide acid and other consumables. Also removal of free gold grains ahead of the grinding
circuit will ultimately improve flotation efficiency as there is a reduction in gold 'smearing’

onto other minerals and effecting flotation properties.

Figure 2.5: Bowl Concentrator
2.5.3. Alluvial gold recovery methods

e Mercury Amalgamation
Gold is commonly extracted from process concentrates using mercury which combines with
gold to form an ‘amalgam’. The gold is removed from the amalgam by evaporation of the
mercury. Mercury is commonly added to sluice box riffles and also to grinding mills
(Subasinghe & Maru, 1994). Also gold can be recovered from fine-grained tailings by washing
them over a copper plate covered with mercury. Mercury amalgamation is effective for the
recovery of gold from material in the size range 1.5 mm to 70 pm. Gold recovery efficiency
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falls for grains finer than 70 pm and typically only 65% of free gold grains finer than 75 pm
Guinea (Eltham, 1984).
Mercury is occasionally poured between the riffles on a sluice box in an attempt to capture
fine-grained gold. However the contact time between the mercury and the gold is not sufficient
to allow amalgamation to occur. Often fine gold remains suspended in the flow of material
above the riffles and does not come into contact with the mercury. Up to 30% of the mercury
used in sluices in Papua New Guinea finds its way directly into local rivers. Passing the
tailings over ‘amalgamation units’ or through mercury filled columns has been recommended
as a method of recovering this fine gold. However these are ultimately unsatisfactory as they
still pose a threat to the environment (Subasinghe & Maru, 1994).

e Cyanidation
Cyanidation is the process whereby gold is recovered using a cyanide solution. Gold is
dissolved using the cyanide solution and the resulting complex, Au (CN) can be removed from
solution by various methods (Deschenes, 1986):

i) The “Merill-Crowe” process, is used to remove the gold from the cyanide by
cementation with powdered zinc.

i) Activated carbon absorption (otherwise known as C-1-P, carbon-in-pulp) is used for
the processing of ores with a high slimes content which are difficult to treat by the
Merrill-Crowe process. The absorption of gold is either performed by:

i) Carbon-in-column from solutions typically from heap leaching which are virtually
free of suspended material

ii) Carbon-in-pulp (CIP) from leach pulps typically slimes, ground ores and calcines.
An alternative to CIP is RIP (Resin-in-pulp) which is easier to use and less
sensitive to the influence of naturally occurring carbon

iii) Carbon-in-leach (CIL) whilst leaching is still in progress. Typically, with ores
containing carbonaceous material that could “rob” the gold from the “pregnant”
(gold-bearing) solution. The carbon is reactivated by heating to 600 to 900°C in a

reducing atmosphere.
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2.6 Remote sensing

Remote sensing in a general sense refers to obtaining information about objects or areas by
using electromagnetic radiation (light) without being in direct contact with the object or area. It
occurs in the day-to-day business of people. Common activities such as reading the newspaper,
watching cars, looking at a lecturer during classes, are all remote sensing activities of the human
eye. The human eyes register the solar light reflected by these objects and the brain interprets
the colors, the grey tones and intensity variations. These data are translated into useful
information. The human eye however is limited to a small part of the electromagnetic spectrum.
In remote sensing various kinds of tools and devices are used to make electromagnetic radiation
outside this range visible to the human eye, especially the near infrared, middle infrared, thermal
infrared and microwaves (De jong et al., 2004). Remote sensing, also called Earth Observation
(OE), refers in a general sense to the instrumentation, techniques and methods used to observe,
or sense, the surface of the earth, usually by the formation of an image in a position, stationary
or mobile, at a certain distance remote from that surface. In a more precise way, remote sensing
seeks to be able to have a total view of a large area at the same time in one view. In remote
sensing, the electromagnetic radiation coming from an object, in case of earth observation this
object is the earth’s surface, is being measured and translated into information about the object
or into processes related to the object. (De jong et al., 2004). Remote sensing techniques allow
taking images of the earth surface in various wavelength region of the electromagnetic spectrum
(EMS). One of the major characteristics of a remotely sensed image is the wavelength region it
represents in the Electromagnetic Spectrum. Some of the images represent reflected solar
radiation in the visible and the Near infrared regions of the electromagnetic spectrum, others
are the measurements of the energy emitted by the earth surface itself that is in the thermal
infrared wavelength region. Remote sensing imagery has many applications in mapping land-
use and cover, agriculture, soils mapping, forestry, city planning, archaeological investigations,
military observation, geomorphological surveying, water quality dynamics and urban growth
(Agarwal.,2011)

2.6.1 Sensors in Remote Sensing

As stipulated by Boyd.,2005, sensors are instruments that have the capability of measuring
electromagnetic radiation. The classification of sensors takes into considerations the following

sensor characteristics, platforms and satellite orbits characteristics, and application domains
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(Denegre., 2013). Boyd.,2005 further explains that they can be classified into two types as
enlisted and described below:
e Passive sensors

Passive sensors do not have their own source of radiation. They are sensitive only to radiation
from a natural origin, usually reflected sunlight or the energy emitted by an earthly object. The
classical example of a passive imaging sensor is the camera, which records the distribution of
radiation from an object on a photosensitive emulsion spread out on a film. Other examples are
the multi-spectral scanner, the thermal scanner and the microwave radiometer. Both sensor and

object are passive.

e Active sensors

Active sensors have a built-in source of radiation. The object is passive. Examples are RADAR
(radio detection and ranging) and LIDAR (light detection and ranging). Radiation can be
recorded in an analogue form, (the aerial photograph is a particular example,) or radiation can
be stored in a digital arrangement, a set of signal values on a magnetic device CD-rom or DVD,
as in most remote sensing records at present. Visualized images may be derived from digital
data of imaging sensors.

2.6.2 The sources of the electromagnetic radiance

De Jong et al., (2004) explains that electromagnetic radiation is a characteristic of numerous
physical processes where all materials with a temperature above 0 kelvin or +273 Celsius have
the power to emit electromagnetic energy. Objects on or near the earth’s surface are able to
reflect or scatter incident electromagnetic radiation emitted by a source, which may be artificial,
such as flash light, laser or microwave radiation, or natural, such as the sun. The visible, near-
infrared (NIR) and middle-infrared (MIR) part of the electromagnetic spectrum, measures solar
radiation reflected by objects at the earth’s surface. The thermal-infrared (TIR) part, particularly
in the atmospheric window at about 10 um measures emitted radiation by objects at the earth’s
surface, be it that this radiation is originating from the sun. And the microwave part of the
spectrum, both reflection of solar light and emission occur at very low energy rates. As a result,
radiation mostly is transmitted to the earth’s surface by an antenna on board the remote sensing
system and, subsequently, the amount of radiation that is reflected is measure (backscattered)

towards the same antenna.
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Figure 2.6: Illustration of remote sensing (Aggarwal, 2011)
Energy Spectrum Wavelengths used in Remote Sensing are;

e Ultraviolet — 0.3 to 0.4 um

e Visible—0.4t00.7 um

e Near Infrared — 0.7 to 1.3 um

e Middle Infrared — 1.3 to 2.8 um
e Thermal Infrared — 2.4 to14 um

e Microwave —1 mmto 1 m.

2.6.3 Stages in Remote Sensing
The following steps have been summarized by Aggarwal., (2011) as the stages involved in

remote sensing (Figure 2.6):

e Emission of electromagnetic radiation, or EMR (sun/self- emission)
e Transmission of energy from the source to the surface of the earth, as well as absorption
and scattering

e Interaction of EMR with the earth’s surface: reflection and emission

Transmission, reception and (pre-) processing

The energy recorded by the sensor has to be transmitted, in electronic form, to a receiving and
processing station where the data are processed into an image (digital and/or hardcopy).
Generally, the provider of the image data will already apply some pre-processing. Pre-
processing operations are intended to correct for sensor- and platform-specific radiometric and
geometric distortions of data. Radiometric corrections may be necessary due to variations in

scene illumination and viewing geometry, atmospheric conditions, and sensor noise and
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response. Each of these will vary depending on the specific sensor and platform used to acquire
the data and the conditions during data acquisition. Also, it may be desirable to convert and/or
calibrate the data to known (absolute) radiation or reflectance units to facilitate comparison
between data.

Image analysis and interpretation

The outstanding advantage of digital recordings is that numerous manipulations can be applied
to the observational data according to the methods of digital image processing and pattern
recognition. A much extended set of algorithms can be applied in an automatic way by using
one of the various software packages for image analysis that are on the market. In principle,

three categories of information can be derived from remote sensing:

e The assignment of class labels to the individual pixels or objects in an image, called
classification creating, for example, a thematic land cover map;
e The estimation of object properties from remote sensing for example, assessing the
amount of biomass of agricultural crops or forest types;
Observing, for example, the properties of vegetation, one has to pay attention to numerous
variables. Examples of these are the irradiance, the direction of the radiation source, the
condition of the atmosphere and its influence on the detected radiation, the presence of
surrounding objects, the viewing angle of the sensor and, last but not least, the variations
pertinent to the vegetation such as growing stage, moisture content, leaf area index, number of
leaf layers and soil background. In summary, information about the earth’s surface and its

features may be obtained from images by detection on the basis of:

e Spectral characteristics (wavelength or frequency, reflective or emissive properties);
e Spatial characteristics (viewing angle of the sensor, shape and size of the object,
position,
e Site, distribution, texture);
e Temporal characteristics (changes in time and position);
e Polarization characteristics (object effects in relation to the polarization conditions of
the transmitter and receiver).
These information-extraction algorithms can generally only be applied to earth observation
images when the images are radiometrically processed that is, converted from raw digital

numbers into physical units such as radiance or reflectance. Such correction should account for
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sensor characteristics, terrain topography and atmospheric conditions. Furthermore, images
must be geometrically corrected for the effects of scanner distortions of the image, orbital
geometry and figure of the earth.

The final product

The output from remote sensing can be in various forms and often is information that is used as
input for further analysis, for example, in a geographical information system (GIS). On the one
hand, information present in a GIS can help in the analysis and interpretation of remote sensing
data. On the other hand, the results of a remote sensing analysis can be stored in a GIS.
Subsequently, this information can be combined with other types of information for various
types of studies or applications. As an example, a land cover map can be considered as an ‘end
product’ of a remote sensing analysis. It can be used as input in a study towards groundwater
pollution by combining it with various spatial and statistical data. (Jong et al., 2004)

2.6.4 Optical satellites used in remote sensing

LANDSAT

Landsat series is a joint USGS and NASA-led enterprise for Earth Observation that represents
the world's longest running system of satellites for moderate-resolution optical remote sensing

for land, coastal areas and shallow waters.

Landsat-1 to 3: Landsat-1 was launched in 1972, and was the first Earth observation satellite
with the goal to monitor the world's land. Successful launches followed with Landsat-2 in 1975
and Landsat-3 in 1978.

Landsat-4 and 5: Landsat-4 was launched in 1982 and Landsat-5 in 1984. It carried the Multi
Spectral Scanner and Thematic Mapper instruments

Landsat-6 satellite failed to achieve its orbit and the communication with satellite was never
established. The series continues to this day, making Landsat the longest continuous Earth
imaging programme in history

Landsat-7 was launched in 1999. It carries the Enhanced Thematic Mapper Plus 8-band
whiskbroom scanning radiometer instrument. Landsat 7 is capable of generating 15 by 15 m

resolution images
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Table 2.1: Landsat 7 Bands, wavelength and resolution

Band No. Wavelength (um) ™ I.3and Spatial resolution (m)
Information
8 0.52-0.90 PAN 15
1 0.45 - 0.52 (VIS, blue) 30
2 0.53-0.61 (VIS, green) 30
3 0.63 - 0.69 (VIS, red) 30
4 0.77 - 0.90 NIR 30
5 155-1.75 SWIR 30
7 2.08 - 2.35 SWIR 30
6 104-125 TIR 60

Landsat-8 was launched in 2013. It carries the Operational Land Imager and Thermal Infrared

Sensor Operators.

Table2.2: Generalities of Landsat 8

Launched date 11 February 2013

Orbit Height 705 km

Orbit Type Sun-synchronous near-polar

Orbit Period 99 minutes

Inclination 98.2

Repeat Cycle 16 days

Equatorial Crossing Time 10:00 a.m. +/- 15 minutes (United States
Geological Survey)
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The Landsat program comprises several generations of satellites, each improving spatial,
spectral, and radiometric resolution. The most recent missions, Landsat 8 and Landsat 9,
provide operational land imaging with enhanced sensors such as the Operational Land Imager
(OLI) and the Thermal Infrared Sensor (TIRS). These advancements enable accurate long-term

environmental monitoring (Roy et al., 2021).

Applications of Landsat Imagery

e Land Degradation Assessment
Landsat imagery is widely used for assessing land degradation through spectral indices such
as the Normalized Difference Vegetation Index (NDVI), Bare Soil Index (BSI), and
Normalized Difference Moisture Index (NDMI). These indices help monitor vegetation loss,
soil exposure, and moisture content in degraded landscapes (Huang et al., 2020).

e Land Surface Temperature (LST) Analysis
Landsat’s thermal bands (TIRS) are used to estimate land surface temperature (LST), which
is crucial for studying urban heat islands, deforestation, and climate change impacts. The split-
window algorithm and radiative transfer models improve the accuracy of LST retrieval
(Sobrino et al., 2022).

e Land Use and Land Cover Change Detection
With its long historical archive, Landsat data enables change detection analysis for
deforestation, urban expansion, and agricultural transformation. Machine learning techniques,
such as random forests and deep learning, are increasingly applied to classify land use patterns
from Landsat images (Belward et al., 2021).
Case Studies Using Landsat Imagery

e Desertification in the Sahara
A study using Landsat NDVI and BSI indices to analyze desertification trends in the Sahara
between 1985 and 2020 found a significant expansion of arid zones. Long-term analysis
demonstrated a decline in vegetation due to climate change and overgrazing (Touati et al.,
2021).

e Deforestation in the Amazon
Landsat imagery has been instrumental in tracking deforestation in the Amazon rainforest. A
combination of NDVI and LST analysis between 2000 and 2022 showed extensive tree cover
loss due to illegal logging and agricultural expansion (Souza et al., 2022).

Sentinel
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Sentinel satellite imagery, developed by the European Space Agency (ESA) under the
Copernicus Program, provides high-resolution, multi-temporal, and multi-spectral remote
sensing data for various environmental applications. The Sentinel constellation consists of
multiple satellites, including Sentinel-1 (SAR), Sentinel-2 (optical multispectral), Sentinel-3
(ocean and land monitoring), and others, which offer significant advancements in Earth
observation for scientific research and policy-making (ESA, 2022).
. Advantages of Landsat Images
e Long-Term Data Availability: Landsat has been operational since 1972, providing a
long-term dataset for historical analysis.
e Consistent Temporal Resolution: Landsat satellites provide data every 16 days, useful
for monitoring long-term environmental changes.
e Thermal Imaging Capability: Landsat 8 and 9 include Thermal Infrared Sensor (TIRS),
beneficial for land surface temperature and moisture studies.
e Higher Radiometric Resolution: Landsat 8 and 9 have 12-bit radiometric resolution,
allowing better detection of subtle spectral variations.
e Global Coverage: Landsat provides systematic and continuous global coverage, making
it suitable for large-scale environmental studies.
Sentinel Mission Overview
The Sentinel satellite program comprises several missions designed to monitor different aspects
of the Earth's surface. The key Sentinel missions include:
Sentinel-1: Synthetic Aperture Radar (SAR) for all-weather, day-and-night land and ocean
monitoring.
Sentinel-2: Optical and multispectral imaging for land monitoring, vegetation analysis, and land
use classification.
Sentinel-3: Ocean and land surface monitoring, including sea surface temperature, vegetation,
and atmospheric composition.
Sentinel-5P: Atmospheric monitoring for air pollution and greenhouse gas emissions.

Sentinel-6: High-precision sea-level monitoring.

31



Table 2.3: Sentinel 2 Bands, wavelength and resolution

Sentinel-2A Sentinel-2B
Sentinel | Characteristi Central Bandwidt | central it Spatial
andwi
-2 bands ¢ wavelengt | h wavelength resolutio
h (nm)
hm) | (m) | (m) n (m)

Coastal

1 442.7 21 442.2 21 60
aerosol

2 Blue 492.4 66 492.1 66 10

3 Green 559.8 36 559.0 36 10

4 Red 664.6 31 664.9 31 10
Vegetation

5 704.1 15 703.8 16 20
red edge
Vegetation

6 740.5 15 739.1 15 20
red edge
Vegetation

7 782.8 20 779.7 20 20
red edge

8 NIR 832.8 106 832.9 106 10

8A Narrow NIR | 864.7 21 864.0 22 20

9 Water vapour | 945.1 20 943.2 21 60
SWIR —

10 _ 1373.5 31 1376.9 30 60
Cirrus

11 SWIR 1613.7 91 1610.4 94 20

12 SWIR 2202.4 175 2185.7 185 20
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https://en.wikipedia.org/wiki/Red_edge

Sentinel-2: Multispectral Analysis for Environmental Monitoring
Sentinel-2, launched in 2015, is specifically designed for high-resolution multispectral imaging
of land surfaces. It provides 13 spectral bands ranging from visible to shortwave infrared
(SWIR), enabling applications such as vegetation monitoring, land use/land cover
classification, and water quality assessment (Drusch et al., 2012). The mission offers a high
spatial resolution (10m, 20m, and 60m) and a frequent revisit time (5 days), making it highly
suitable for environmental change detection.
Applications of Sentinel Imagery

e Land Degradation Assessment
Sentinel imagery is widely used for monitoring land degradation processes such as
deforestation, soil erosion, and desertification. Multispectral indices such as NDVI (Normalized
Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), and BSI (Bare
Soil Index) derived from Sentinel-2 data have been instrumental in tracking vegetation loss and
soil exposure (Zhu et al., 2020).

e Water Quality Monitoring
Sentinel-2 and Sentinel-3 provide essential data for monitoring water bodies by assessing
parameters such as turbidity, chlorophyll-a concentration, and suspended sediments. The
Normalized Difference Water Index (NDWI) is commonly used to evaluate surface water extent
and water quality variations (Pahlevan et al., 2019).

e Climate Change and Urban Expansion
Sentinel data supports climate change studies by providing long-term land surface temperature
(LST) trends, urban heat island analysis, and changes in vegetation phenology. The integration
of Sentinel-1 SAR with Sentinel-2 optical data enhances urban expansion monitoring and
infrastructure growth analysis (Pesaresi et al., 2021).
Case Studies Using Sentinel Imagery

e Land Degradation in the Sahel
A study in the Sahel region utilized Sentinel-2 NDVI and NDMI indices to assess vegetation
degradation trends from 2016 to 2023. The results revealed a decline in vegetation health due
to increased drought frequency and land-use changes (Dossa et al., 2023).

e Monitoring Deforestation in the Amazon
Sentinel-1 and Sentinel-2 data were used to map deforestation patterns in the Amazon

rainforest. Time-series analysis demonstrated significant vegetation loss in mining-affected
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areas, with Sentinel-1 SAR detecting deforestation under cloud cover conditions (Silva et al.,
2022).
Advantages of Sentinel Images
Higher Spatial Resolution: Sentinel-2 provides up to 10m resolution in visible and near-infrared
bands, compared to Landsat's 30m, offering finer details.
Frequent Revisit Time: Sentinel-2 satellites revisit the same location every 5 days, significantly
improving temporal resolution compared to Landsat.
More Spectral Bands: Sentinel-2 has 13 spectral bands, including dedicated bands for
vegetation and water monitoring, enhancing accuracy in index calculations.
Free and Open Access: Similar to Landsat, Sentinel-2 data is freely available, promoting
extensive research and application.
Better Cloud Coverage Handling: Sentinel-2's short revisit time allows for better selection of
cloud-free images.
Application-Based Comparison between Landsat and Sentinel
e NDVI & Vegetation Monitoring: Sentinel-2’s higher spatial and temporal resolution
offers more detailed vegetation analysis.
e Water Quality and NDWI: Sentinel-2’s additional bands improve water body
delineation and quality assessment.
e LULC Classification: Higher resolution Sentinel-2 data improves land cover
classification accuracy.
e Historical Change Detection: Landsat’s long-term archive makes it ideal for tracking
environmental changes over decades.
2.7 Spatiotemporal Analysis
Spatiotemporal analysis is a method of examining data that considers both the spatial (location
and temporal (time) aspects, allowing researchers to study how phenomena change across
different geographic areas over time, revealing patterns and trends that might not be apparent
when looking at only one dimension (space and time) alone; essentially, it analyzes data
collected across space and time to understand how things evolve geographically over time
(Nushrat et al., 2022).
Spatiotemporal analysis is crucial in environmental monitoring because it allows for the

simultaneous study of spatial patterns and their changes over time, providing a more
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comprehensive understanding of environmental processes and enabling better management and
prediction (Kokinou etal., 2023).

By analyzing data across different locations, researchers can pin point areas with high pollution
levels, sensitive ecosystems, or areas particularly vulnerable to climate change (Sahragard et
al). Spatiotemporal analysis can help identify potential sources of pollution or environmental
degradation by correlating spatial patterns with temporal changes in human activities or natural
phenomena (Jiajia et al., 2024).

2.7.1 Methods and techniques used in spatiotemporal analysis

Spatiotemporal analysis encompasses a range of methods and techniques designed to
understand phenomena that vary across both space and time. These methods are crucial for
analyzing dynamic processes, such as environmental changes, urban development, and disease
spread.

Time series analysis

Purposed: To identify patterns, trends, and relationships in data collected over time, and make
forecasts and predictions about future values based on the observed historical data (Yen., 2023).
Techniques:

e Trend analysis: Examines changes in data over both time and location, revealing
patterns and relationships that might be missed by analyzing space or time alone
(Hernandez et al.,2025).

e Seasonality Analysis: Identifying and understanding recurring patterns within the data
that occur at fixed time intervals, such as daily, weekly, or yearly cycles, to understand
the influence of seasonal factors on spatial distributions and trends (Kenton.,2020).

e Autocorrelation Analysis: examines the correlation between data points at different
time lags (Noble and Kavlakoglu, 2024).

e Spectral Analysis: Decomposes spatiotemporal data (data varying both in space and
time) into spatial and temporal components, allowing for the analysis of frequencies and
wave vectors in this dimension to reveal underlying dynamic patterns (Szymko et al.,
2021).

2.7.2 Spatiotemporal Indices for environmental monitoring

e Bare Soil Index (BSI)

The Bare Soil Index (BSI) is a remote sensing-derived index used to identify and quantify bare

soil surfaces. It utilizes spectral bands from satellite imagery to distinguish bare soil from
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vegetation, water bodies, and built-up areas (Zhao et al., 2018). The importance of BSI has
grown in environmental monitoring, particularly in land degradation studies, agricultural
assessments, and urban expansion monitoring (Roy et al., 2020).
BSI Calculation and Methodology
BSI is calculated using the following formula:
BSI = [(SWIR1 + Red) - (NIR + Blue)] / [(SWIRL1 + Red) + (NIR + Blue)]
For Landsat 8:
BSI =[(Band 6 + Band 4) - (Band 5 + Band 2)] / [(Band 6 + Band 4) + (Band 5 + Band 2)]
This equation enhances the contrast between bare soil and other land cover types, making it
particularly useful for soil exposure monitoring (Mandal et al., 2019).
Applications of BSI
Land Degradation and Desertification: BSI has been widely used to detect land degradation
and desertification. It helps track soil erosion, sand encroachment, and vegetation loss in arid
and semi-arid regions (Zhang et al., 2021).
Agricultural Land Management: BSI is crucial in assessing soil conditions and evaluating
land suitability for cultivation. Farmers and researchers use it to monitor soil degradation caused
by overgrazing, deforestation, and unsustainable agricultural practices (Xie et al., 2018).
Urban Expansion and Land Use Change: BSI is instrumental in mapping urban sprawl and
distinguishing built-up areas from bare soil. It is often combined with machine learning
algorithms to enhance urban planning and land-use classification (Roy et al., 2020).
Comparison with Other Remote Sensing Indices
BSI is often compared with indices such as NDVI (Normalized Difference Vegetation Index),
SAVI (Soil-Adjusted Vegetation Index), and NDBI (Normalized Difference Built-up Index).
Unlike NDVI, which is vegetation-focused, BSI highlights soil exposure, making it a more
accurate tool for analyzing land degradation and soil surface conditions (Zhao et al., 2018).

e Normalized Difference Moisture Index (NDMI)
The Normalized Difference Moisture Index (NDMI) is a remote sensing-derived index used to
assess vegetation moisture content, which plays a critical role in monitoring drought, forest
health, and land degradation (Gao, 1996). NDMI is particularly effective in analyzing land
degradation processes such as deforestation, soil erosion, and desertification (Xue & Su, 2017).

The availability of high-resolution satellite data from Sentinel-2 has significantly enhanced
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NDMI-based studies by providing improved spectral and temporal coverage (Van Leeuwen et
al., 2020).
NDMI Calculation and Methodology
NDMI is derived from near-infrared (NIR) and shortwave infrared (SWIR) bands, making it
sensitive to vegetation water content and soil moisture. The equation for NDMI is given as:
NDMI = (NIR - SWIR) / (NIR + SWIR) For Sentinel-2 imagery, the specific bands used in
NDMI calculation are:
NIR (Band 8: 842 nm)
SWIR (Band 11: 1610 nm)
Role of NDMI in Land Degradation Assessment
NDMI is widely used to monitor land degradation, particularly in regions affected by
deforestation, overgrazing, and unsustainable agricultural practices. Since soil moisture is a key
indicator of land degradation, NDMI effectively maps changes in vegetation water content,
which can indicate stress due to degradation (Chen et al., 2021).
Sentinel-2 for NDMI-Based Analysis
The Sentinel-2 satellite, with its 10-20m spatial resolution, provides high-quality NDMI data
for land degradation studies. Its frequent revisit time (5 days) allows near-real-time monitoring
of vegetation and soil moisture dynamics (Drusch et al., 2012).
Case Studies on NDMI and Land Degradation
A study in the Sahel region used Sentinel-2 NDMI to analyze land degradation trends from
2015 to 2022. The results showed a decline in NDMI values, indicating increasing soil dryness
and vegetation stress (Dossa et al., 2023).
In the Amazon rainforest, NDMI analysis has been used to track deforestation-induced soil
moisture loss. A study found that regions experiencing tree loss showed a 20-30% reduction in
NDMI values over 10 years (Silva et al., 2021).

e Normalized Difference Vegetation Index (NDVI)
The Normalized Difference Vegetation Index (NDVI) is a widely used remote sensing index
for monitoring vegetation health, productivity, and land cover changes. Introduced by Rouse et
al. (1973), NDVI utilizes the contrast between the red and near-infrared (NIR) spectral bands
to measure vegetation vigor. The index has become an essential tool in agricultural monitoring,
ecological assessments, and climate change studies, as it provides a reliable indication of

vegetation stress and biomass productivity.
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Historical Background and Development

NDVI was first conceptualized in the early 1970s during the development of multispectral
remote sensing techniques. Rouse et al. (1973) formulated NDV1 to quantify vegetation cover
using Landsat satellite imagery. Since then, the index has been extensively used in ecological
and agricultural research. Technological advancements, such as the introduction of high-
resolution sensors on platforms like MODIS, Sentinel-2, and Landsat 8, have significantly
enhanced NDVI applications (Pettorelli et al., 2005).

NDVI Calculation and Variants

NDVI is computed using the following equation:

NDVI = (NIR - Red) / (NIR + Red)

For Landsat 8:

NDVI = (Band 5 - Band 4) / (Band 5 + Band 4)

For Sentinel-2:

NDVI = (Band 8 - Band 4) / (Band 8 + Band 4)

Several NDVI modifications exist, such as the Enhanced Vegetation Index (EVI), which
improves sensitivity to high biomass areas by reducing atmospheric effects (Huete et al., 2002).
Applications of NDVI in Environmental and Agricultural Monitoring

Vegetation Health and Drought Monitoring: NDVI is extensively used to assess vegetation
health and drought conditions. Research by Tucker et al. (1985) demonstrated NDVTI’s
capability in detecting drought-induced vegetation stress. Modern applications include
integrating NDV|I with meteorological data to assess agricultural vulnerability to climate
variability (Pettorelli et al., 2005).

Land Use and Land Cover Change Detection: NDVI has played a crucial role in monitoring
deforestation, urbanization, and land degradation. Hansen et al. (2013) used NDV|1 time-series
data to analyze global forest loss, highlighting its utility in long-term ecological assessments.
Agricultural Productivity and Crop Monitoring: NDVI-based remote sensing enables
precision agriculture by monitoring crop health, estimating yield, and detecting pest
infestations. Studies have demonstrated NDVI’s effectiveness in optimizing irrigation

schedules and fertilizer application (Lobell et al., 2015).
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Comparison with Other Remote Sensing Indices
NDVI is often compared with alternative vegetation indices such as EVI, SAVI, and MSAVI.
While NDVI is widely used for vegetation health monitoring, EVI provides better performance
in dense vegetation areas by minimizing soil background effects (Huete et al., 2002).
Case Studies on NDVI Applications
Several studies have demonstrated NDVI’s utility in vegetation monitoring. For example,
Pettorelli et al. (2005) analyzed NDVI trends to assess the impact of climate change on
vegetation dynamics in the Sahel region. Similarly, NASA’s MODIS NDVI data has been
extensively used to track global agricultural trends and ecosystem productivity.

e Normalized Difference Water Index (NDWI)
Water resources are vital for ecological balance, human consumption, and economic activities.
Remote sensing has emerged as an essential tool in monitoring hydrological changes, enabling
the detection of water bodies, seasonal variations, and the impact of anthropogenic activities
(Gao, 1996). One of the most widely used indices for water body detection is the Normalized
Difference Water Index (NDWI), first introduced by McFeeters (1996). The index enhances
open water features in satellite imagery by leveraging spectral differences in water absorption
and reflectance.
Historical Background and Development
NDWI was developed to distinguish water bodies from land using multispectral satellite
imagery (McFeeters, 1996). It was originally designed for use with Landsat TM data, utilizing
the Green and Near-Infrared (NIR) bands to enhance the water reflectance while minimizing
vegetation influence. However, researchers soon identified limitations in NDW!I's performance,
particularly in urban environments where built-up areas often had similar spectral
characteristics to water bodies (Xu, 2006). As a result, a modified version, the Modified
Normalized Difference Water Index (MNDWI1), was introduced by Xu (2006) to improve water
detection in urban and turbid environments by replacing NIR with the Short-Wave Infrared
(SWIR) band.
NDWI Calculation and Variants
NDWI is derived using the following equation:
NDWI = (Green - NIR) / (Green + NIR)
For Landsat 8:
NDW!I = (Band 3 - Band 5) / (Band 3 + Band 5)
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For Sentinel-2:

NDW!I = (Band 3 - Band 8) / (Band 3 + Band 8)

MNDW], a variation of NDWI, replaces the NIR band with SWIR to improve water body
detection in highly reflective environments:

MNDWI = (Green - SWIR) / (Green + SWIR)

For Landsat 8:

MNDWI = (Band 3 - Band 6) / (Band 3 + Band 6)

Applications of NDWI in Environmental Monitoring

NDWI has been widely used for various hydrological and environmental studies. Key
applications include:

Water Body Detection and Monitoring: NDWI is extensively used to delineate water bodies,
such as lakes, rivers, and reservoirs, by enhancing the contrast between water and surrounding
land features (Gao, 1996). Research has shown that NDWI effectively maps surface water
changes over time, aiding in hydrological studies and water resource management (McFeeters,
2013).

Flood Monitoring and Disaster Assessment: Flood events significantly alter water coverage,
and NDWI has proven effective in rapidly assessing flood extent. Pekel et al. (2016) used
NDWI-based time-series analysis to detect flooding patterns across multiple regions. Studies
utilizing Sentinel-1 and Sentinel-2 data have combined NDWI with synthetic aperture radar
(SAR) to improve flood mapping accuracy (Huang et al., 2018).

Water Quality and Turbidity Analysis: Water quality assessment has become a critical
application of NDWI, particularly when coupled with MNDW!I and other spectral indices.
Researchers have employed NDWI to monitor sedimentation in mining-affected rivers, where
high turbidity impacts aquatic ecosystems (Chen et al., 2020). Further, integrating NDWI with
the Chlorophyll-a Index has been useful for detecting algal blooms and assessing eutrophication
levels in water bodies.

Comparison with Other Remote Sensing Indices

NDWI is often compared with other indices in remote sensing, including NDVI and BSI. NDVI
primarily focuses on vegetation health, whereas NDWI enhances water detection (Ouma &
Tateishi, 2006). In contrast, the Bare Soil Index (BSI) is used for identifying exposed soil,

making it less effective in detecting water bodies.
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Case Studies on NDWI Applications
Several studies demonstrate NDWTI’s effectiveness in water body detection. Pekel et al. (2016)
mapped global surface water changes over 30 years using NDWI, revealing substantial shifts
due to climate change and human activities. Additionally, NDW!I has been applied in mining-
affected regions to assess water pollution levels and land degradation (Kumar et al., 2019).

e Turbidity Index
Turbidity is a key parameter in water quality assessment, representing the cloudiness or haziness
of water caused by suspended particles (Brown & Johnson, 2019). High turbidity levels can
negatively impact aquatic ecosystems, drinking water quality, and industrial applications.
Remote sensing has emerged as a powerful tool for monitoring turbidity over large spatial and
temporal scales (Gao et al., 2020). Turbidity results from natural sources such as sediment
transport, organic matter, and algal growth, as well as anthropogenic activities like
deforestation, mining, and wastewater discharge (Smith et al., 2020). It affects light penetration
in water bodies, impacting photosynthetic activity and aquatic habitats (Brown & Johnson,
2019). High turbidity can also harbor pathogens, posing health risks (EPA, 2021). Regulatory
standards, such as those set by the U.S. Environmental Protection Agency (EPA), help establish
acceptable turbidity levels for various water uses.
Concept and Development Turbidity Index (T1) is a mathematical representation of water clarity
based on spectral reflectance characteristics (Lee et al., 2018). It is commonly derived using
satellite data, which capture variations in water optical properties (Martinez et al., 2022).
Different T1 models
Single-Band Methods: Utilizing specific spectral bands (e.g., red or near-infrared) to estimate
turbidity levels
Multi-Band Indices: Combining multiple spectral bands to enhance accuracy and reduce
atmospheric interference
Remote Sensing Methods for Turbidity Assessment
Remote sensing provides cost-effective and frequent monitoring of turbidity over large areas.
Optical sensors on satellites such as Landsat, Sentinel-2, and MODIS have been widely used
for turbidity assessment (Wang & Li, 2017). Key aspects include:
Spectral Reflectance Properties: Turbidity affects the absorption and scattering of light,

influencing satellite-derived measurements (Zhang & Chen, 2023).
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Empirical vs. Analytical Models: Empirical models use field-measured turbidity data for
calibration, while analytical models derive turbidity from inherent optical properties (Clark et
al., 2021).
Cloud and Atmospheric Correction Techniques: Addressing the impact of atmospheric
conditions on satellite-based turbidity retrievals (Nguyen et al., 2019).
Comparative Analysis of Turbidity Indices
Different turbidity indices have been developed based on various sensors and analytical
techniques. For example:
Landsat-Based Indices: Moderate spatial resolution (30m) suitable for large-scale monitoring
but limited by temporal resolution (16-day revisit time) (NASA, 2022).
Sentinel-2-Based Indices: Higher spatial (10m) and temporal (5-day) resolution, improving
turbidity detection in smaller water bodies (Clark et al., 2021).
MODIS-Based Indices: High temporal resolution (daily) but lower spatial resolution (250—
500m), useful for large-scale ocean and river monitoring (Miller et al., 2021).
Applications of Turbidity Index in Environmental
Studies Turbidity indices are used in various environmental applications:
Water Quality Monitoring: Assessing pollution levels in lakes, rivers, and coastal zones
(Jackson et al., 2020).
Impact of Land Use Changes: Understanding how deforestation and urbanization influence
sediment transport and water clarity (Harris et al., 2018).
Climate Change Studies: Analyzing long-term trends in turbidity levels due to changes in
precipitation and temperature patterns (Thompson & White, 2023).

e Suspended Sediment Concentration (SSC)
Suspended Sediment Concentration (SSC) is a crucial parameter in hydrology and
environmental science, representing the concentration of fine-grained particles suspended in
water bodies. These sediments originate from soil erosion, urban runoff, and industrial
discharges, significantly impacting water quality, aquatic habitats, and reservoir capacities
(Horowitz, 2008). Accurate monitoring of SSC is essential for effective water resource
management and environmental protection. Traditional in-situ measurement methods, while
accurate, are often labor-intensive and spatially limited. Remote sensing technologies have
emerged as efficient alternatives, offering extensive spatial coverage and frequent temporal
observations (Miller & McKee, 2004).
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SSC refers to the mass of sediment particles suspended per unit volume of water, typically
expressed in milligrams per liter (mg/L). These particles include clay, silt, and fine sand, which
can originate from natural processes like soil erosion and anthropogenic activities such as
deforestation and urbanization (Walling, 2006). Elevated SSC levels can reduce light
penetration, affecting photosynthesis in aquatic plants and altering thermal stratification in
water bodies (Bilotta & Brazier, 2008). Additionally, high sediment loads can transport
nutrients and contaminants, leading to eutrophication and degradation of water quality
(Brakenridge et al., 2020).

Traditional Measurement Techniques

Conventional methods for measuring SSC involve collecting water samples and analyzing them
in laboratories to determine sediment concentrations. Techniques such as filtration, gravimetric
analysis, and optical turbidity measurements have been widely used (Gray et al., 2000). While
these methods provide accurate point measurements, they are limited by their spatial and
temporal coverage. Deploying field campaigns to collect samples across large or remote areas
can be resource-intensive and may not capture the dynamic variability of SSC, especially during
episodic events like storms or floods (Liu et al., 2018).

Remote Sensing Approaches for SSC Estimation

Remote sensing offers a powerful tool for monitoring SSC over extensive areas with high
temporal frequency. Satellite sensors detect reflected solar radiation from water surfaces,
capturing variations in spectral signatures influenced by suspended sediments. As sediment
levels increase, water reflectance typically rises in the red and near-infrared bands due to
scattering effects (Binding et al., 2010).

Satellite Sensors Utilized in SSC Monitoring

Several satellite sensors have been employed to estimate SSC:

Landsat Series: The Landsat program has provided multispectral imagery since the 1970s, with
sensors like the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and
Operational Land Imager (OLI). These sensors offer moderate spatial resolution (30 meters)
and a 16-day revisit cycle, making them suitable for monitoring large water bodies and detecting
long-term sediment trends (Gao, 2020).

Sentinel-2: Launched by the European Space Agency, Sentinel-2 satellites provide high-

resolution multispectral imagery with a 10 to 20-meter spatial resolution and a 5-day revisit
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period. The increased temporal frequency and finer spatial resolution enhance the capability to
monitor SSC in smaller or dynamic water bodies (Vanhellemont & Ruddick, 2015).
MODIS (Moderate Resolution Imaging Spectroradiometer): MODIS sensors aboard NASA's
Terra and Aqua satellites provide daily global coverage with moderate spatial resolution (250
to 500 meters). Despite the coarser resolution, MODIS data are valuable for monitoring large-
scale sediment dynamics and capturing transient events like floods or storms (Mertes et al.,
1993).
Empirical and Analytical Models for SSC Retrieval
Retrieving SSC from remote sensing data involves developing models that relate spectral
reflectance to sediment concentrations. Empirical models establish statistical relationships
between in-situ SSC measurements and corresponding satellite-derived reflectance values
(Nechad et al., 2010). Analytical or semi-analytical models incorporate the inherent optical
properties of water and sediments to simulate the interaction of light with suspended particles
(Chen et al., 2014). Advancements in machine learning technigques have further enhanced SSC
retrieval by enabling the development of algorithms that can capture nonlinear relationships and
improve prediction accuracy (Huang et al., 2021).
Applications of SSC Monitoring
Accurate SSC monitoring has diverse applications in environmental management and research:
Water Quality Assessment: High sediment concentrations can degrade water quality, affecting
drinking water supplies and aquatic habitats (Zhang et al., 2019).
Erosion and Sediment Transport Studies: Understanding sediment dynamics is crucial for
managing soil erosion and sediment deposition in rivers and reservoirs (Vercruysse et al., 2017).
Coastal and Marine Studies: SSC monitoring supports the study of coastal erosion, estuarine
sediment dynamics, and the impact of human activities on marine ecosystems (Wu et al., 2020).
e Land Use/Land Cover (LULC) Evaluation
With the availability of remote sensing products, it is possible to study the changes on land with
changing times. Several studies have been carried out using different methods, and satellites to
evaluate land changes around the world.
Aguro, 1996 used remote sensing and GIS to evaluate Land Degradation and Land Management
in Ghana where he demonstrates how these technologies have been successfully used in Ghana
to assess degraded lands within the Nation's Forest Reserves. In his research, Landsat TM bands

453 (Red, Green,Blue) were combined with digital maps to separate forest from non-forest.
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Degraded portions of the forest were then delineated and their areas digitally computed. These
areas were then successfully validated through ground checks to provide data for reforestation
program.

Lobo et al., 2018 in their research in Mapping Mining Areas in the Brazilian Amazon Using
MSI/Sentinel-2 Imagery noticed that mining plays an important role for the economy of the
Amazon, yet little is known about its attributes such as area, type, scale, and current status as
well as socio/environmental impacts. Therefore, they propose a low time-consuming and high
detection accuracy method for mapping the mining areas. This method involved the. Detection
of the mining areas conducted in five main steps which are; MSI (Multispectral
Instrument)/Sentinel-2A image selection; definition of land-use classes and training samples;
supervised classification, vector editing for quality control; and validation with high-resolution
Rapid Eye images. The results of using this method gave the total areas occupied by mining
areas. A look at the recent events of mining impacts in this area, the large extension of mining
areas detected raised a concern regarding its socio-environmental impacts for the Amazonian
ecosystems and for local communities.

Kiran et al., 2018 in their research on Land Use/Land Cover Dynamics During 2001 And 2021
Using Google Earth Engine and GIS in Ramagundam Coal Mining Area, A Part of Pranhita
Godavari Valley, Southern India, used Landsat 5 and Landsat 8 multispectral satellite data from
2001 to 2021 with <5% cloud cover was used to classify LULC classes. Using. Google Earth
Engine through supervised classification And Regression Tree (CART) classifier. Their
research showed that mining area had increased to 298% (from 15.20 km2to 60.50 km2) from
2001 to 2021 and significantly reduces other classes. And as such concluded that these results
could be useful to the coal industry/company in carefully monitoring the effects of mining. The
studied further recommended the use of such data as an aid in policy making and environmental
analysis in understanding the nature of change in LULC features in the area.

Pei et al., 2017 used Object-based image analysis to map land use in the Panxie coal mining
area, East China, where long-term underground coal mines have been exploited since the 1980s.
A rule-based classification approach was developed for a Pleiades image to identify the desired
land use classes, and the same rule-based classification strategies, the threshold values were
modified slightly, and applied to the Landsat series images. They succeeded to produce an
overall accuracy of between 80 and 94%. The results of this study provided a valuable basis for

sustainable land management and environmental planning in the Panxie coal mining area.

45



Singh et al, research on the use of Landsat satellite images (MSS, TM, and ETM+) carryout
Land use/land cover change detection analysis of Dhanbad district, in India. The study
evaluated the LU/LC changes due to exploitation of coal in Dhanbad district of India during the
period of 1987 to 2017 by means of supervised classification. The LU/LC change indicated
that; for 30 years the percentage share of dense forest, open scrub, agricultural fallow, river,
water body and mining was at a decrease. Land use changes were due to harvesting of forest
for fuel, shelter and agriculture, construction of residential houses in fallow land, urbanization
and sand removal for construction material. An increase in low dense forest, agricultural land,
barren land, sand and built-up area were due to shift of land use from forest to open scrub,
agricultural fields and barren lands, new settlement by utilizing sands from river banks making
the river stretch wider, open mine pits converted into water bodies in the district. This research
further confirms to the fact that man and his activity in most communities is the major cause of
land degradation. With these findings, they concluded that there is a need of enhancement of
forest area due to dwindling of life support system (vegetation) for biological organisms, a need
for the mine managers and local inhabitants to pay attention to forest protection and to reduce
the air and water pollution in the coal capital of India.

Nodem et al., 2018 carried out a study aimed at assessing the impacts of mining on the
environment using a combination of spatial analysis, questionnaire administration and
Leopold’s grid of impact assessment. The impacts of mining on physical environment included
air pollution by emission of dusts and fumes from engines, soil and subsoil degradation by
earthworks and release of wastewater containing chemicals from companies. Destruction of
habitats; decrease in quantity of forested area since the arrival of mining companies were
observed. Aquatic fauna was seen to be threatened by high turbidity and death of fishes. The
research recommended that Government bodies must ensure permanent monitoring and
environmental audit to check the compliance of mining companies and their activities with
regulations. That the Protection of environment and people in the area required some
management strategies which included: control and monitoring of deforestation and its
evolution; a review of the law or current mining code should be performed. The operator must
develop and submit an EIA and an Environmental and Social Management Plan to ensure the
protection of the environment during and after the gold mining. For the excavations, holes, land
degraded, and sites affected by the activities; proper measures are needed for their maintenance

and restoration. Mining activities in the area require the supervision of an interdisciplinary team

46



where the role and actions of different stakeholders are clearly stated. The state must ensure
permanent monitoring, compliance and control of mining by a regular environmental audit of
each mining company. Such a study shows the correlation between questionnaires, and remote
sensing for effective results. In the study of land use and land cover analysis

Gadal et al, 2021.research on a new soil degradation method analysis by Sentinel 2 images
combining spectral indices and statistics analysis: application to the Cameroonian shores of
Lake Chad and its hinterland paper where it aimed at modeling the soil degradation risk along
the Cameroonian shores of Lake Chad. The processing was based on a statistical analysis of
spectral indices of sentinel 2A satellite images. A total of four vegetation indices such as the
Greenness Index and Disease water stress index and nine soil indices such as moisture,
brightness, or organic matter content are computed and combined to characterize vegetation
cover and bare soil state, respectively. All these indices are aggregated to produce one image
(independent variable) and then regressed by individual indices (dependent variable) to retrieve
correlation and determination coefficients. Principal Component Analysis and factorial analysis
are applied to all spectral indices to summarize information, obtain factorial coordinates, and
detect positive/negative correlation. The first factor contains soil information, whereas the
second factor focuses on vegetation information. The final equation of the model is obtained by
weighting each index with both its coefficient of determination and factorials coordinates. This
result generated figures cartography of five classes of soils potentially exposed to the risk of
soil degradation.

Temgoua et al., 2018 in their study carried out in Ajei upland watershed community forest in
the North West Region of Cameroon analyzed the spatial and temporal dynamics of land cover
and land use from 1988 to 2018 where they identified and characterized the agents, drivers and
pressures of change. The study involved the use of Landsat satellite images, field survey,
interview and a focus on group discussion methods to identify the activities carried out by the
local population and to determine agents, drivers and pressures of land use and land cover
change. By using landsat images they were able to discover the four main land cover of the Ajei
community forest; dense vegetation, sparse or degraded vegetation, savanna and bare soil. From
the field surveys, and group discussion methods, the lost in vegetation resulted from the actions
of farmers, cattle grazers and wood extractors who through farming, grazing and lumbering
activities pressurize and converted the dense forest cover. Economic motives notably the need

to increase household income from a frequent demand for farm and wood products in nearby
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markets represent the drivers of forest cover change. At the end of this research, the research
recommended that, controlling grazing activities notably in the dry season to check out the use
of fires, community sensitization especially among cattle headmen on the importance of the
community forest, reforestation activities through natural regeneration or tree planting are
needed in the forest.

Kamga et al., 2017 carried out research in the eastern region of Cameroon with the aim of
monitoring Land Use and Land Cover (LULC) changes between 1987 and 2017 within Bétaré-
Oya, Ngoura and Batouri Districts which are witnessing extensive gold mining activities,
assessing the dynamics between LULC types and understanding the anthropogenic impact of
gold mining activities during this period. A series of Landsat images acquired in 1987, 2000,
and 2016/2017 were used to examine LULC change trajectories at per-pixel scale with the post-
classification change detection techniques based on the matrix of changes. A supervised
classification by the maximum likelihood algorithm composed of five classes — Bare land,
Settlements, Water bodies, Vegetation and Mine activities, was designed for this study, in order
to classify Landsat images into thematic maps. This research revealed spatio-temporal change
patterns, various composition and rates among the three study areas. Also, it shows the strong
appearance and emergence of mining activities between 2000 and 2017 are coupled with
increase in settlement surfaces and major changes in environment in the study areas. The LULC
change analysis over time for the study areas have provide the current change trends. This study
stresses the usefulness of Landsat TM/ETM+ and Landsat Data Continuity Mission (LDCM)
data and highlights the data processing methods for long-term monitoring of artisanal mining
activities impacts on the environment. The findings gathered from this research should be used
to influence policy, legislation and decision-making in the mining and environmental sector.
2.8 Rehabilitation

This refers to the process restoring degraded or damaged ecosystems to functional state,
emphasizing the recovery of ecosystem processes and services, rather than necessarily restoring
the original species composition.

2.8.1 Principles of rehabilitation

Acknowledge the importance of ecosystem integrity:

Ecological rehabilitation seeks to restore the structure, function and processes of ecosystems,

aiming to enhance biodiversity and resilience. The focus is not necessarily on recreating an
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exact replica of the original ecosystem, but rather on facilitating its recovery and ensuring its
capacity to provide ecological services (Gann et al., 2019).
Tailor restoration to local contexts:
Restoration efforts should be tailored to specific environmental conditions, including the unique
characteristics of the degraded ecosystem and its surrounding landscape. This means
considering factors such as climate, soil types, hydrology and native species to ensure the
success of restoration efforts (Gann et al., 2019).
Prioritize ecological goals:
Restoring activities should be guided by ecological goals, with a focus on restoring natural
processes and functions, such as water flow, nutrient cycling and habitat provision (Gann et al.,
2019). This may include for example, promoting the recovery of native plant and animal
communities, reducing pollution and restoring soil wealth (Maanavilja et al., 2014).
Engage stakeholders and promote participation:
Successful ecological rehabilitation requires the participation of local communities, land
managers, scientists, and policy makers (Gann et al., 2019). Engaging stakeholders in planning
and implementation can ensure that restoration efforts are relevant, sustainable and culturally
appropriate (eden-plus.org).
Emphasize long term sustainability:
Restoration projects should be design to be sustainable in the long term, with a focus on self-
sustaining ecosystems that can withstand environmental changes. This may involve reducing
human impact on the ecosystem, promoting biodiversity, and ensuring that restoration activities
are managed effectively (Maanavilja et al., 2014).
Monitor and assess restoration outcomes:
Regular monitoring and assessment are essential to track the progress of restoration projects
and make adjustments as needed. This can involve measuring changes in biodiversity,
ecosystem structure and function and water quality (Trinidad et al., 2023).
2.8.2 Ecosystem Services
Ecosystem services are the direct and indirect contributions of ecosystems to human well-being.
They are the benefits that people obtain from nature. Ecosystem services are typically
categorized into four main types:

e Provision services: These are the tangible goods that humans obtain from ecosystems,

such as food, water, timber and raw materials.
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e Regulatory services: These are the benefits derived from the natural processes that
regulate ecosystem functions, such as climate regulation, flood control and disease
regulation.

e Supporting services: These are the fundamental processes that sustain other ecosystem
services, such as nutrient cycling, soil formation and pollination.

e Cultural services: These are the non-material benefits that ecosystems provide to
human societies, such as recreation, tourism, aesthetic appreciation, and spiritual or
cultural activities.

Restoration of ecosystem services
Ecological rehabilitation efforts often focus on restoring degraded ecosystems to enhance their
capacity to provide ecosystem services. Key strategies include:

e Revegetation and reforestation: Restoring vegetation cover helps to improve soil
stability, regulate water flow and sequester carbon. It also provides habitat for wildlife
and enhances aesthetic values (Massoukou et al., 2023).

e Wetland Restoration: Restoring wetlands improve water purification, flood control
and habitat provision. Wetlands are highly productive ecosystems that provide
nUMerous services.

e Soil remediation: Restoring soil health enhances nutrient cycling, water infiltration and
plant growth. This is particularly important in mining-affected areas with contaminated
soils.

e Habitat creation: Creating and restoring habitats for specific species or communities
enhances biodiversity and ecosystem resilience. This can include creating artificial
reefs, building wildlife corridors, and restoring degraded forests.

e Restoring natural hydrology: Restoring the natural water flow of an area, greatly
increases the ability of the local ecosystem to heal itself.

2.8.3 Remote sensing applications in mining Rehabilitation

Remote sensing plays a crucial role in both characterizing mining sites before rehabilitation and
monitoring the progress of restoration efforts. By providing a synoptic view and enabling
repeated observations, it offers valuable insights for effective rehabilitation planning and

execution.
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1. Baseline site characterization
Land cover mapping: Remote sensing allows for the creation of detailed land cover maps,
which are essential for understanding the pre-mining and post mining landscape. This involves
identifying areas of bare ground, vegetation, water bodies and infrastructure. High resolution
imagery can be used to map detailed features, while moderate-resolution imagery can cover
larger area (McKenna et al.,2020).
Topographic analysis: Digital Elevation Models (DEMs) derived from remote sensing data
(LiDAR, satellite stereo imagery) are used to analyze topography, identify erosion-prone areas,
and plan landform construction. DEMs are also used to monitor changes in landform stability
during rehabilitation (Sodnomdarjaa et al.,2023).
Soil Characterization: Hyperspectral remote sensing can be used to assess soil properties, such
as organic matter content, moisture, and heavy metal contamination. This information is crucial
for planning soil remediation and revegetation strategies (Lau et al.,2008).

2. Monitoring rehabilitation progress:
Vegetation recovery monitoring: Vegetation indices (NDVI, EVI) are used to track the
progress of revegetation efforts, assess vegetation health, and identify areas where recovery is
lagging. Time series analysis of satellite imagery allows for the monitoring of long-term trends
in vegetation recovery (McKenna, 2021).
Water quality Monitoring: Remote sensing is used to monitor changes in water quality during
rehabilitation, ensuring that remediation efforts are effective (Moliere et al., 2012).
Landform stability monitoring: Repeated DEMs are used to monitor changes in landform
stability, detect erosion, and assess the effectiveness of erosion control measures (Zhao et al.,
2016).
GIS-Based multi-criteria evaluation for land suitability assessment of post mining areas in the
Antaibao open-pit coal mine” was explored by Bagdanaviciute and Valiunas., (2012) to assess
and map land suitability for ecological restoration in a post-mining area using a GIS based
multi-criteria evaluation (MCA) approach, and to provide spatial guidance for rehabilitation
planning. The researchers collected spatial data on topography (DEM), soil properties, and land
cover (Landsat); performed a weighted overlay analysis in GIS to come out with map zones of
high, moderate and low. This resulted in the generation of a land suitability map showing spatial
variations in revegetation potential and provided recommendations for rehabilitation strategies

based on suitability maps.
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Hyperspectral remote sensing for vegetation monitoring and species identification in mine
rehabilitation” by Plaza et al., (2016) to review and demonstrate the applications of
hyperspectral remote sensing for vegetation monitoring and specie identification in mine
rehabilitation, and to show this technology can improve rehabilitation. They reviewed and
discussed the use of hyperspectral imaging to capture detailed spectral signatures of vegetation
and soils. Their results showed how to map the spatial distribution of different plant species in
a rehabilitated mining area.

2.8.4 Case studies of successful mining-affected rehabilitation projects

Successful rehabilitation of mining-affected areas requires a multifaceted approach, as
demonstrated by several global case studies. The Sudbury Regreening Program in Canada
exemplifies the importance of sustained, long-term commitment and community involvement
in ecological restoration. After decades of severe environmental damage from nickel and copper
mining, Sudbury achieved significant vegetation recovery through liming acidic soils, planting
native species, and reducing industrial emissions. This highlights the necessity of a scientific,

adaptive management strategy in rehabilitation (Monet and McCaffrey2025).

Conversely, the Zollverein Coal Mine Industrial Complex in Germany showcases successful
repurposing and revitalization. Transforming a former coal mine into a UNESCO World
Heritage site, cultural hub, and recreational space demonstrates that rehabilitation can yield
significant social and economic benefits while preserving industrial heritage. This case
underscores the potential for innovative land-use strategies post-mining.

The Beenup Titanium Mine in Australia further emphasizes the importance of ecological
restoration and community engagement. By focusing on creating permanent wetlands with
native vegetation and fostering collaboration with scientific experts, the Beenup project
achieved successful ecological rehabilitation. This exemplifies the importance of tailored
rehabilitation strategies that focus on restoring specific ecosystem functions (Norrish et al.,
2019).

Across these cases, several common factors emerge as critical for successful rehabilitation:
early integration of rehabilitation planning into mining operations, active community
participation, rigorous scientific monitoring and adaptive management, and a long-term
commitment to ecological restoration. Furthermore, the use of remote sensing and GIS systems
can provide valuable tools for monitoring and planning rehabilitation efforts, ensuring that

restoration goals are met effectively. These case studies provide valuable insights for the
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rehabilitation of alluvial gold mining-affected areas in Betaré-Oya, emphasizing the need for a
comprehensive and adaptive approach."

Doumo et al., (2022) conducted a study assessing metallic contamination in soils and sediments
with Betare-Oya gold artisanal mine district. Their analysis revealed significant levels of
metallic contamination, indicating substantial environmental impact from mining activities.
This study highlights the direct correlation between artisanal mining and increased heavy metal
pollution in the region

Research carried out on mine waste and heavy metal pollution in Betare-Oya mining area
(Eastern Cameroon) demonstrates the severe environmental consequences of mining activities.
This research focuses on the levels of heavy metal pollution that are directly linked to mine
waste that is produced by the artisanal gold mining.

A study focusing on the assessment of surface water quality in Betare-Oya gold mining area
provides valuable insights into the hydrological impacts of mining. The research shows the
degradation of surface water quality due to the mining operations.

Studies utilizing remote sensing techniques have documented significant land cover changes in
Betare-Oya region, primarily driven by artisanal gold mining. Analysis of satellite imagery
shows a marked increase.

2.9 Research gap

This literature review has highlighted the significant environmental and socio-economic
impacts of alluvial gold mining in the Betaré-Oya region, and the potential of remote sensing
for spatiotemporal analysis and rehabilitation. However, one significant gap lies in the
assessment of rehabilitation effectiveness. While many studies document the environmental
impact of alluvial gold mining, a lack of comprehensive research exists on the ecological and
socio-economic sustainability of rehabilitation practices. This study focuses on monitoring and
evaluation to understand the true impact of rehabilitation efforts, while proposing rehabilitation

measures for enhancing sustainable mining practices in Betaré-Oya mining district.
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CHAPTER 3
MATERIALS AND METHOD
3.1 Materials
This section outlines the materials used in conducting the research
3.1.1 Field Observation Materials
Field observations involved capturing images of active and abandoned mine sites, mapping

affected areas using GPS, and conducting interviews with local communities.

Table 3.1: Field observation Materials

Material Function

Garmin GPSMAP 64s Used for mapping active and abandoned mine
sites.

Smartphone Captured images of land degradation, active

mining zones, and abandoned sites.

Field Notebook Recorded observations, GPS coordinates,

and interview responses.

Semi-structured Interviews Collected qualitative data on mining
activities, environmental impacts, and

community perspectives.

3.1.2 Remote Sensing Data
Satellite imagery was used to analyze land use changes, vegetation health, land degradation,

and water qualitty caused by mining activities.

Table 3.2: Remote sensing Data

Satellite Data Function
Sentinel-2 (10m resolution, MSI sensor) Used for NDVI (vegetation health), NDWI

(water body assessment), BSI (bare soil

analysis), NDMI (moisture index), TI
(Turbidity  index), SSC  (Suspended
Sediment  Concentration) and LULC

classification.

3.1.3. Software Used for Data Processing
The following software tools were used for remote sensing analysis, geospatial mapping, and

classification.
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Table 3.3: Software used for Image Processing and Statistical analysis (Appendix A)

Software Function

SNAP Tool (Sentinel Application Platform) | Pre-processing of  Sentinel-2  images,
including radiometric and atmospheric

corrections.

Google Earth Pro Used for high-resolution image validation

and manual inspection of mine site changes.

ArcGIS Used for spatial analysis, map creation, GPS

data integration, and land use classification.

ENVI Used for cloud-based processing of satellite
imagery, time-series analysis, and spectral

index computation.

MS Excel Used for quantitative data analysis after

performing spatial analysis

3.1.4 Safety and Ethical Consideration Materials
The research adhered to ethical and safety guidelines to ensure responsible environmental

monitoring and data collection.

Table 3.4: Safety Materials
Material Function

Safety boat Protected the researcher while navigating

rough terrain.

Face Mask Minimized exposure to dust and

contaminants in mining-affected areas.

First Aid Kit Ensured quick response to potential injuries

during fieldwork.
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Figure 3.3: Google Pixel 6 smartphone with high resolution camera
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e

Figure 3.4: Safety boat

3.2 Methods
This study adopts a mixed-method approach combining remote sensing, GIS analysis, and field-
based assessments to analyze spatiotemporal environmental changes in Betare-Oya’s alluvial
gold mining-affected areas. The study integrates quantitative methods (satellite image analysis,
spectral indices computation, and water quality assessment) and qualitative methods (field basic
assessment and expert consultations).
3.2.1 Field-based preliminary evaluation and satellite imagery for assessing land
degradation

1. Field-based and Google Earth Pro Evaluation
A field visit was conducted between January and March 2025 to assess the extent of
environmental degradation caused by alluvial gold mining. The assessment focused on active
mining areas, abandoned mine sites, and general land degradation patterns. During the field
visit, active and abandoned mine sites were identified and documented. Key observations
included:

e |dentification of active artisanal and semi-mechanized mining operations.

e Assessment of land degradation, deforestation, and soil erosion in affected areas.

e Visual examination of water bodies for signs of sedimentation and pollution.

e Inspection of abandoned mine sites to determine the extent of environmental impact.
A Garmin GPSMAP 64s was used to record the geographic coordinates of mining sites. GPS
data collection was essential for spatial mapping and integration with satellite imagery. The
collected data included:

e Locations of active mining pits and excavated areas.
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e Coordinates of abandoned mine sites.

e Mapping of areas with visible land degradation and deforestation.
A Google pixel 6 smartphone with high resolution camera was used to capture photographic
evidence of mining activities, abandoned sites, and environmental degradation. These images
were used for validation of remote sensing analysis.
Semi-structured interviews were conducted with local residents, miners, and community leaders
to gather qualitative information on mining activities and their environmental impacts. The
discussions covered:

e Changes in land use and environmental conditions over time.

e Perceptions of the impact of mining on water quality and vegetation.

e Community perspectives on abandoned mine sites and possible rehabilitation strategies.
To supplement field observations, Google Earth Pro was used to observed high-resolution
satellite images of selected mining-affected areas for the year 2023. The imagery provided a
detailed view of abandoned mine sites and land degradation. The selection of 2023 was to
evaluate rehabilitation efforts with recent field observation.

2. Remote Sensing Satellite Imagery Evaluation

A. Bare Soil Index
This study employs remote sensing techniques, specifically the Bare Soil Index (BSI), to
analyze the spatiotemporal changes in bare soil extent within alluvial gold mining-affected areas
in the Betaré-Oya region of Cameroon. Sentinel-2 satellite imagery from 2021, 2023, and 2024
were processed to quantify and map bare soil areas, providing insights into degree of land
degradation. The workflow involves image acquisition, preprocessing using SNAP (Sentinel
Application Platform), BSI calculation, and spatial analysis using ArcGIS 10.8.
Data Acquisition
Sentinel-2 Level-2 (surface reflectance) imagery were acquired for the Betaré-Oya region for
the years 2021, 2023, and 2024. The selection of imagery prioritize dates within the dry season
(November- March) to minimize cloud cover and vegetation influence on the BSI calculation.
The images were downloaded from the Copernicus Open Dataspace System (formerly Sentinels
Scientific Data Hub).

Image Selection Criteria:

e Images with less than 10% cloud cover over the study area were preferred.
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The Level-2 product provides atmospherically corrected surface reflectance values,
reducing the need for additional atmospheric correction procedures.

The imagery must cover the entire Betaré-Oya study area.

Table 3.5: Characteristics of downloaded Sentinel images

Year | Satellite Date of image Time Phonological
cycle

2021 | Sentinel-2 Level 2 09/12/2021 09:22:59 Dry Season

2023 | Sentinel-2 Level 2 14/12/2023 09:24:01 Dry Season

2024 | Sentinel-2 Level 2 23/12/2024 09:23:19 Dry Season

Preprocessing using SNAP

SNAP (Sentinel Application Platform), developed by the European Space Agency (ESA) was

used for preprocessing the Sentinel-2 imagery. SNAP provides a comprehensive environment

for processing Sentinel data. The following preprocessing steps were performed within SNAP:

The downloaded Sentinel-2 Level-2A granules were imported into SNAP.

A subset operation was performed to extract the area of interest (Betaré-Oya) in order
to reduce processing time and storage requirements.

While Level-2A data is typically already coregistered, band resampling to a common
spatial resolution was performed using the nearest neighbor method.

Although the Level-2A data is atmospherically corrected, it may still contain clouds or
cloud shadows. The quality information associated with the data will be used to generate
a cloud mask to remove these areas from the analysis. The Sen2Cor algorithm embedded
in SNAP was utilized for this purpose. Pixels identified as cloud or cloud shadow were
masked out by setting their values to "NoData."

Although Level-2A data is geometrically corrected, a visual inspection was performed
to ensure accurate georeferencing.

The preprocessed imagery, with cloud masking and resampling applied, were exported
from SNAP in a format compatible with ArcGIS 10.8 (GeoTIFF).

Bare Soil Index (BSI) Calculation
The BSI is calculated using the following formula, which utilizes the red, blue, shortwave
infrared (SWIR1), and near-infrared (NIR) bands of the Sentinel-2 imagery:
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BSI = ((SWIRL1 + Red) - (NIR + Blue)) / (SWIR1 + Red) + (NIR + Blue))

Where:
SWIRL1: Shortwave Infrared 1 (Sentinel-2 Band 11)
Red band (Sentinel-2 Band 4)
NIR: Near-Infrared band (Sentinel-2 Band 8)
Blue: Blue band (Sentinel-2 Band 2)
The BSI was calculated using the Raster Calculator tool in ArcGIS 10.8. The band designations
were carefully matched to the corresponding Sentinel-2 bands in the preprocessed imagery. BSI
values range from -1 to +1. Higher BSI values typically indicate a greater proportion of bare
soil.
Spatial Analysis and Mapping in ArcGIS 10.8:
The BSI values were classified into different categories of bare soil using a supervised
(maximum likelihood classification) techniques. Ground truth data (collected through field
surveys and/or high-resolution imagery interpretation) were used to train the supervised
classification algorithm and validate the accuracy of the classification approach. The categories
included:

e Bare Soil (actively mined areas or abandoned mine site)

e Dry grass (disturbed areas, partially revegetated areas)

e Sparse Vegetation (naturally bare areas, areas with minimal mining impact)

e Dense Vegetation

The accuracy of the classification was assessed using Kappa coefficient. Ground truth data were
used as reference for accuracy assessment.
B. Normalized Difference Moisture Index

The Normalized Difference Moisture Index (NDMI) will be utilized as a proxy for vegetation
moisture, which is a crucial indicator of land degradation and ecosystem disturbance in areas
impacted by mining activities. Sentinel-2 satellite imagery from the years 2021, 2023, and 2024
will be processed and analyzed using SNAP (Sentinel Application Platform) and ArcGIS 10.8
to quantify and map changes in vegetation moisture content. This information will be used to
assess the degree of environmental impact of alluvial gold mining in the study area in a time
series approach. The NDMI analysis will complement the Bare Soil Index (BSI) analysis to

provide a comprehensive understanding of land cover changes in the study area.
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Data Acquisition
Sentinel-2 Level-2A (surface reflectance) imagery were acquired for the Betaré-Oya region for
the years 2021, 2023, and 2024 (images have same characteristics as on Table 3.5). These years
are selected to capture a baseline condition, an intermediate period, and a later stage of potential
environmental change. The Sentinel-2 mission provides high-resolution multispectral imagery
with a revisit time that is suitable for monitoring land cover dynamics. The Level-2A product
provides atmospherically corrected surface reflectance values, which are essential for accurate
NDMI calculation.
Preprocessing using SNAP
The downloaded Sentinel-2 Level-2A granules were imported into SNAP using the dedicated
data import tool.
A subset operation was performed to extract the area of interest (Betaré-Oya region) from the
full Sentinel-2 scene.
Band resampling is necessary to align all bands to a common spatial resolution. The 10-meter
bands (Blue, Green, Red, and NIR) was used as the reference resolution, and the 20-meter
SWIR bands was resampled to 10 meters using the nearest neighbor resampling method. This
method preserves the original pixel values and avoids introducing artificial data.
Although Level-2A data is atmospherically corrected, residual cloud cover or cloud shadows
may still be present. The Sen2Cor algorithm integrated within SNAP was used to generate a
cloud mask. This algorithm utilizes spectral and spatial characteristics to identify cloud and
cloud shadow pixels. Pixels identified as clouds or cloud shadows will be flagged and
subsequently excluded from the NDMI calculation.
A visual inspection of the preprocessed imagery was conducted to ensure accurate
georeferencing.
The preprocessed imagery, with cloud masking and resampling applied, will be exported from
SNAP in GeoTIFF format for further processing in ArcGIS 10.8.
Normalized Difference Moisture Index (NDMI) Calculation

NDMI is calculated using the formula: NDMI = (NIR - SWIR1) / (NIR + SWIR1)
Where:
NIR: Near-Infrared band (Sentinel-2 Band 8)
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SWIR1: Shortwave Infrared 1 (Sentinel-2 Band 11)The NDMI utilizes the reflectance
difference between the NIR and SWIR1 bands. The NIR band is highly sensitive to vegetation
canopy structure, while the SWIR1 band is sensitive to water content in vegetation and soil.
Therefore, the NDMI provides a measure of vegetation moisture, which is an indicator of
vegetation health and stress.
Spatial Analysis and Mapping
ArcGIS 10.8 was used for spatial analysis, mapping, and visualization of the NDMI results.
ArcGIS provides a comprehensive suite of tools for raster analysis, spatial statistics, and map
creation.
The NDMI raster layers for 2021, 2023, and 2024 were imported into ArcGIS 10.8.
The NDMI values were classified into different categories of vegetation moisture content. The
classification scheme was based on a combination of literature review and visual interpretation
of the NDMI values in relation to land cover types in the study area. The categories include:

e High Vegetation Moisture (Dense, healthy vegetation)

e Moderate Vegetation Moisture (Moderately dense vegetation)

e Low Vegetation Moisture(Sparse vegetation, stressed vegetation)

e Moisture-deficient areas(Bare soil, non-vegetated areas)

High-quality maps were created to visualize the spatial distribution of vegetation moisture

content.
Image download —— | Index Calculation
A4
v
Subset region of Spatial Analysis &
interest Mapping
v
Image Accuracy 1

enhancement Assessment

Figure 3.5: Flowchart for BSI, NDMI, NDVI, NDWI, Tl and SSC
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3.2.2 Vegetation Health Trend Assessment

Sentinel-2 satellite imagery from 2021, 2023, and 2024 were processed to quantify and map
vegetation density, reflecting the impact of mining activities. The workflow encompasses image
acquisition, preprocessing using SNAP (Sentinel Application Platform), NDVI calculation in
ENVI and spatial analysis using ArcGIS Pro 10.8.

Data Acquisition

Sentinel-2 Level-2A (surface reflectance) imagery were acquired for the Betaré-Oya region for
the years 2021, 2023, and 2024. The acquisition dates ideally for NVDI was to fall within the
peak growing season (typically August-October) to maximize vegetation signal. But due to case
persistent cloud cover during the peak growing season, imagery from adjacent months

(December) was considered.

Table 3.6: Characteristics of downloaded Sentinel images used for NDVI

Year | Satellite Date of image Time Phonological
cycle

2021 | Sentinel-2 Level 2 09/12/2021 09:22:59 Dry Season

2023 | Sentinel-2 Level 2 14/12/2023 09:24:01 Dry Season

2024 | Sentinel-2 Level 2 23/12/2024 09:23:19 Dry Season

The acquired images were preprocessed as earlier described above under the BSI preprocessing
method using SNAP software.
NDVI Calculation
NDVI is calculated as: NDVI = (NIR - Red) / (NIR + Red)
Where:
NIR = Near-Infrared band (Sentinel-2 Band 8)
Red = Red band (Sentinel-2 Band 4)
Spatial Analysis and Mapping in ENVI/ArcGIS 10.8
ArcGIS 10.8 and ENVI was used for spatial analysis and mapping. The Geotiff preprocessed
raster images for 2021, 2023, and 2024 were imported into the software. Using the raster

calculator, the NDV1 values were obtained for each Year. The images were then classify into
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meaningful categories (Dense Vegetation, Moderate VVegetation, Sparse Vegetation, Bare Soil
and water).
Accuracy Assessment
The NDVI values and classifications were compared with satellite images from Google earth
pro to assess the accuracy of the remote sensing analysis. Calculated metrics like Kappa
coefficient, user's accuracy, and producer's accuracy were performed.
3.2.3 Water quality indices Assessment
A. Normalized Difference Water index
Alluvial gold mining frequently disrupts natural drainage patterns, alters water quality, and
affects the extent and connectivity of water bodies. Sentinel-2 imagery from 2021, 2023, and
2024 were processed to quantify and map water bodies, allowing for the assessment of mining-
related disturbances. The analysis involved image acquisition, preprocessing using SNAP
(Sentinel Application Platform), NDWI calculation, and spatial analysis using ENVI and
ArcGIS 10.8.
Data Acquisition
Sentinel-2 Level-2A (surface reflectance) imagery were acquired for the Betaré-Oya region for
the years 2021, 2023, and 2024. The timing of image acquisition aimed for the end of the rainy
season (October/November) or the beginning of the dry season (December), when water bodies
are typically at their fullest extent, and cloud cover is less likely. Due to cloud cover, images
from adjacent months (September/November or January/February) can be considered, with
careful assessment of potential changes in water levels. The characteristics of the images used
for this study are similar to that as shown on Table 3.6.
The acquired images were preprocessed as earlier described above under the BSI preprocessing
method using SNAP software.
NDW!I Calculation
NDWI = (Green - NIR) / (Green + NIR)
Where:
Green = Green band (Sentinel-2 Band 3)
NIR = Near-Infrared band (Sentinel-2 Band 8)
Spatial Analysis and Mapping Procedure
e Import NDWI raster layers for 2021, 2023, and 2025.
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e Applied a threshold to the NDW!I raster to extract water bodies. This is a critical step
and requires careful consideration.

e Refined the threshold based on visual interpretation of the NDWI raster overlaid with
high-resolution imagery from Google earth pro for accuracy assessment. Adjusted the
threshold until the extracted water bodies accurately match the known water extents.

e Converted the threshold NDW!I raster into a binary classification:

Water: NDWI values above the threshold (0.0)

Non-Water: NDWI values below the threshold (0.0).

B. Turbidity Index
Data Acquisition
To estimate the Turbidity Index (TI), Sentinel-2 Level-2A imagery was obtained from the
Copernicus Open Space Datasystem The selection of images was based on the following
criteria:

e Minimal cloud cover (<10%) to reduce atmospheric interference.

e Auvailability of essential spectral bands for turbidity assessment

e Band 2 (Blue, 490 nm)

e Band 3 (Green, 560 nm)

e Band 4 (Red, 665 nm)

e Band 8 (NIR, 842 nm)
These bands were selected based on their spectral response to suspended particles and organic
matter, which contribute to turbidity in water bodies.
Preprocessing in SNAP
The acquired Sentinel-2 Level-2A images were preprocessed using the Sentinel Application
Platform (SNAP) to ensure radiometric and geometric consistency. The following steps were
performed:
The Sentinel-2 Level-2A images in .SAFE format were loaded into SNAP, and the bands
relevant for turbidity estimation were selected.
To optimize processing efficiency, the study area was clipped using the Subset Tool in SNAP.
This step ensured that only relevant portions of the image were retained, eliminating

unnecessary computational load.

65



Cloud-contaminated pixels were removed using the Scene Classification Layer (SCL) available
in Sentinel-2 Level-2A products. Pixels corresponding to clouds, shadows, and land surfaces
(SCL values: 3, 8, 9, and 10) were masked out to improve the accuracy of turbidity estimation.
The final preprocessed image was exported as a GeoT IFF file with a 10-meter spatial resolution,
making it compatible with GIS-based analysis in ArcGIS 10.8.
Processing in ArcGIS
The estimation of Turbidity Index (T1) was performed in ArcGIS 10.8 using empirical models
that relate satellite reflectance values to in-situ turbidity measurements. The processing steps
included:
The preprocessed GeoTIFF file was imported into ArcGIS using the Add Data tool. The spatial
reference was verified to ensure proper georeferencing (UTM Zone 33N, WGS 84).
The Turbidity Index was calculated using a spectral band ratio approach that enhances the
detection of suspended sediments and dissolved organic matter. The widely used formula is:
T1 = (Red/Green)
Where:
Red (Band 4, 665 nm) captures high turbidity levels due to its sensitivity to sediment-laden
water.
Green (Band 3, 560 nm) serves as a reference to normalize the impact of background
reflectance.
The Raster Calculator tool in ArcGIS was used to implement this equation by applying:
("'B4™" /""B3").

Where B4 = Red band reflectance and B3 = Green band reflectance.
Classification of Turbidity Levels
The computed Turbidity Index (T1) values were classified into distinct turbidity levels using the
Reclassify Tool in ArcGIS. The classification thresholds were adapted from previous studies
(Dogliotti et al., 2015; Novoa et al., 2021):

e No Turbidity (<0)

e Low Turbidity (0-0.1)

e High Turbidity (>0.1)
Visualization and Mapping
The final Turbidity Index (T1) map was styled using a color gradient to represent variations in

water turbidity. The GeoTIFF and PNG files were exported for interpretation and reporting.
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C. Suspended Sediment Concentration (SSC)

Data Acquisition
Sentinel-2 Level-2 imagery was utilized to estimate Suspended Sediment Concentration (SSC)
in the study area. The images were acquired from the Copernicus Open space Datasystem
website (Table 3.6). Level-2 data were selected as they provide atmospherically corrected
Bottom of Atmosphere (BOA) reflectance, reducing the need for additional atmospheric
correction.
The selection of images was based on the following criteria:
Cloud cover of less than 10% to ensure minimal atmospheric interference.
Availability of essential spectral bands for SSC estimation, including:

e Band 2 (Blue, 490 nm)

e Band 3 (Green, 560 nm)

e Band 4 (Red, 665 nm)

e Band 8 (NIR, 842 nm)
These spectral bands have been widely used in empirical models for SSC estimation due to their
sensitivity to water reflectance and sediment load.
Preprocessing in ESA SNAP
The acquired Sentinel-2 images were preprocessed using the Sentinel Application Platform
(SNAP) v11, developed by the European Space Agency (ESA). The following preprocessing
steps were carried out:
The Sentinel-2 Level-2 images in .SAFE format were loaded into SNAP, and individual bands
relevant for SSC estimation were extracted.
To optimize processing efficiency, the study area was extracted using the Subset Tool in SNAP.
This step ensured that only relevant portions of the image were retained, minimizing
unnecessary data processing.
Cloud-contaminated pixels were removed using the Scene Classification Layer (SCL) available
in Sentinel-2 Level-2 products. Pixels corresponding to clouds, shadows, and non-water areas

(SCL values: 3, 8, 9, and 10) were excluded to prevent errors in SSC estimation.
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Exporting Preprocessed Data
The final preprocessed images were exported as GeoTIFF files with a spatial resolution of 10
meters, ensuring compatibility with GIS processing software such as ArcGIS.
Processing in ArcGIS
The estimation of SSC was performed using empirical models that relate satellite reflectance to
in-situ sediment concentration measurements. The processing steps included:
The preprocessed GeoTIFF files were imported into ArcGIS 10.8 using the Add Data tool.
Spatial reference was verified to ensure alignment with the study area’s coordinate system
(UTM Zone 33N, WGS 84).
SSC was estimated using an empirical algorithm based on the relationship between the Red
(Band 4) and Blue (Band 2) spectral reflectance values. The applied model, widely used in
remote sensing literature, is expressed as follows:
SSC=ax (Red)/(Blue) +b
Where:
Red (665 nm, Band 4) is highly sensitive to suspended sediments due to its absorption
properties.
Blue (490 nm, Band 2) is used to normalize the sediment influence.
a and b are calibration coefficients
The Raster Calculator tool in ArcGIS was used to implement this equation by inputting:
("B4"/"B2")*a+b

Where B4 = Red band reflectance and B2 = Blue band reflectance.
Reclassification of SSC Values
To facilitate interpretation, the derived SSC raster was reclassified into distinct sediment
concentration levels using the Reclassify Tool in ArcGIS. The classification scheme followed
thresholds adapted from (Novoa et al., 2021):

e Low Sediment Load (<10 mg/L)

e Moderate Sediment Load (10 - 50 mg/L)

e High Sediment Load (50 - 200mg/L)

e Very High Sediment (>200 mg/L)
Visualization and Mapping
The final SSC map was styled using a color gradient to represent sediment concentration levels.

The map was exported in GeoTIFF and PNG formats for visualization and reporting.
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3.2.4 Land use land cover for monitoring rehabilitation success

Sentinel-2 images were downloaded from corpenicus websites within the same period of the
year for 3 different years; 2021, 2023 and 2025 (see Table 3.5), the chosen period was between
December to March. This choice was guided by the search for same birthday images, good
quality images and same phenological cycle; dry season and also by the challenge of finding
good images with no cloud cover.

Data pre-processing

Satellite image transformations involve manipulations of multiple band data in order to
highlight particular properties or features of interest within the study area, in a better and more
effective way than the original input images

Layer stacking

Layer Stacking was done for each of the sentinel-2 images using SNAP software. Layer
stacking simply involves the process of combining multiple image layers into a single image.
In order to do that the layers should have the same extent (number of rows and number of
columns), which means other bands which have different spatial resolution will need to
resample to the target resolution.

Geometric correction

Geometric corrections include correcting for geometric distortions due to sensor-Earth
geometry variations, and conversion of the data to real world coordinates (for example, latitude
and longitude) on the Earth's surface.

When a number images are to be used together, it is necessary that they be georeferenced, by
georeferencing it is geometric correction, which is the process of correcting the distortions in
an image and trans- forming it so that it has the properties of a map. Image-to-image registration
method was conducted to match the images. So that the images could be as comparable as
possible in terms of geometric and radiometric qualities. To ensure consistency between
datasets during analysis, all data were projected to the Universal Transverse Mercator projection
system (zone 32N) and the World Geodetic System 84 datum. Each image was demarcated and
clipped to the extent of study.

Image Enhancement

Image enhancement was done to improve the appearance of the image to assist in visual
interpretation and analysis. These enhancement functions included contrast, stretching to

increase the tonal distinction between features, and spatial filtering to enhance or suppress
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specific spatial patterns in the image. Also, different colour composites (4-3-2, 8-4-3 and 4-8-
3, 5-4-3 bands, for RGB channels) were used to enhance the identification of features so as to
select training set or classification signatures for use.

Selection of training set

To carry out supervised classification, specific sites on the image that represent homogeneous
examples of the known land-cover types are first selected. And these are commonly referred to
as training sets because the spectral characteristics of these known areas are used to train the
classification algorithm. Training sets are statistical descriptions of the multispectral
characteristics of thematic categories used to "programme™ the classifier with the digital
characteristics of categories. Training areas are sampled portions of the scene, randomly or
purposely selected, used to derive training statistics, and as such must encompass the spectral
variability in the multispectral scene. Training sets were selected for every image (2021, 2023
and 2025). Sample polygons were created based on visual interpretation on the image to
recognize the Land Use/Land Cover feature classes. Every spectral analogous sub-area was
demarcated with specified class name using a training set.

Image Classification

Image Classification is an abstract representation of features of the real-world using classes or
terms derived through a mental process. In the case of spatial information, as for Land Cover,
a classification describes the systematic framework, with the names of the classes, the criteria
used to distinguish them, and the relationship between classes themselves. Classification thus
requires the definition of class boundaries, which should be clear, precise, possibly quantitative,
and based on objective criteria. Image classification operations are used to digitally identify and
classify pixels in the data. It is usually performed on multi-channel data sets (A) and this process
assigns each pixel in an image to a particular class or theme (B) based on statistical
characteristics of the pixel brightness values.

After selecting the training sample/sets, they were satisfactorily reviewed, supervised
classification was done using the maximum likelihood classification Classifier (MLC) which is
the most common efficient statistical technique for evaluating the standard Land use/ land cover
classifications. By the classification, 5 Land Use and Land cover (LULC) types were
recognized, vegetation, bare land, water bodies, mining activities and settlement were
recognized. Due to similarities in the reflectance of certain classes, the algorithm may

experience a confusion while classify the land cover classes and as such may refer to one class
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as another. This was adjusted by post-classification where mistaken classes were reclassified
into the actual classes.
Accuracy Assessment
Pixels to be sampled were selected randomly and transfered to google earth pro, by creating
kml file or by using Google Earth map in ArcGIS as a base map. Google Earth offers high

resolution satellite imagery in different dates and times for many places.

Sample points are interpreted on the Google earth, the interpretation is compared to the
classification results, and correctly classified pixels are tabulated.

The proportion of correctly assigned pixels is estimated by comparing the number of sampled

pixels correctly classified to the total number of sample points.

The overall accuracy of the classified image compares how each of the pixels is classified versus
the definite land cover conditions obtained from their corresponding ground truth data.

Total (overall) accuracy = Number of correct plots/ Total number of plots x100

Producer’s accuracy measures errors of omission, which is a measure of how well real-world

land cover types can be classified.

Producer Accuracy = (Number of Correctly Classified Pixels in each Category)/

(Total Number of Reference Pixels in that Category) x100

User’s accuracy measures errors of commission, which represents the likelihood of a classified

pixel matching the land cover type of its corresponding real-world location.

Users Accuracy = (Number of Correctly Classified Pixels in each Category) /

(Total number of Classified Pixels in that Category) x100

Kappa Coefficient (T) = ((TSxTCS)-Y. (Column Total * Row Total))/ (TS*2-Y (Column
Total x Row Total)) x100

The kappa coefficient have become a standard means of assessment of image classification
accuracy.

Change detection of Land Cover/ Land Use

With the classification of images of the individual years, a post-classification approach of
subtracting the classification maps, 2023 — 2021 and 2025 — 20223 was applied. Quantitative
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area data of the overall land cover changes as well as the gains and losses in each category

between 2021 and 2025 were compiled.
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Figure 3.7: Flowchart for LULC
3.2.5 Proposed Mine Closure and Rehabilitation Strategy

Subset area of ‘ Accuracy ‘

interest

This section outlines the methodology employed to develop a comprehensive and contextually
relevant mine closure and rehabilitation strategy for alluvial gold mining-affected areas in the
Betaré-Oya region of Cameroon. This strategy was based on scientific data collected through
remote sensing analysis (NDVI, NDWI, BSI, LST), supplemented by field observations, and
literature review. The strategy aims to provide a practical and sustainable pathway for restoring
degraded landscapes, mitigating environmental impacts, and promoting long-term ecological
recovery.

Literature Review

A comprehensive review of relevant scientific literature, regulatory frameworks, and industry

best practices related to mine closure and rehabilitation were conducted. The review focused
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on: Rehabilitation Techniques; Environmental Regulations; Best Practices and case Studies:
Analyzing case studies of successful and unsuccessful mine closure projects.

Analysis of Remote Sensing Data and Field Observations

Specifically the data was used to: Identify priority areas for rehabilitation; Assess water
Resources; Characterize vegetation loss and monitor efforts of successful post-mining

rehabilitation.
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Figure 3.7: Flowchart for LULC
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CHAPTER 4
RESULTS AND DISCUSSION

4.1 Land Degradation Assessment

4.1.1 Field-based and Google Earth Pro preliminary evaluation

The field visit conducted between January and March 2025 provided valuable ground-truth data
and preliminary insights into the extent and nature of land degradation within the Betaré-Oya
alluvial gold mining district. Direct observations and photographic documentation from active
and abandoned mine sites revealed a consistent pattern of extensive soil erosion and
sedimentation impacting nearby water bodies, widespread deforestation and removal of topsoil,
leaving barren landscapes, and the presence of large, unrehabilitated mining pits filled with
stagnant water. These observations aligned with the findings of Tchindjang et al. (2018), who
documented similar patterns of deforestation and soil erosion associated with gold mining in
the Eastern Region of Cameroon. The field photographs captured during the visit vividly

illustrate these impacts.

Figure 4.1: Abandoned Mining Pit with Turbid Water (Location: Kombo-koro)
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Figure 4.1 shows a photograph taken at a former mining site at kombo-koro, depicting a large,
abandoned mining pit filled with turbid, stagnant water. The water's opaque, brownish color
suggests a high concentration of suspended sediments and potential chemical contamination,
consistent with the findings of Babut et al. (2019), who reported elevated levels of mercury and
other heavy metals in water samples from the Betaré-Oya region. The surrounding landscape is
devoid of vegetation, with exposed soil and eroded banks clearly visible. This lack of vegetation
cover exacerbates soil erosion and hinders natural regeneration, highlighting the long-term
environmental consequences of unregulated mining practices, where excavated areas are left

unrehabilitated, leading to the accumulation of contaminated water and the loss of biodiversity."

SRS

Figure 4.2: Active Mining Site with Heavy Machinery (Location: Timangaro)
Figure 4.2 shows an active mining site at Timangaro, with heavy machinery excavating soil and

washing plant. The photograph reveals the scale of deforestation required to access alluvial gold
deposits, with a significant area of previously forested land now cleared and disturbed. The
presence of sediment plumes in nearby water bodies suggests ongoing soil erosion and
sedimentation, further impacting water quality and aquatic habitats. This aligns with the
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findings of Kamga et al. (2017), who used Landsat imagery to document the expansion of

artisanal mining at the expense of vegetation cover in the Betare-Oya region.

Figure 4.3: Altered River Course and Sediment Deposition (Location: Lom River)

Figure 4.3 depicts a section of the Lom River where the natural river course has been
significantly altered due to mining activities. The photograph shows a large pile of excavated
material deposited directly adjacent to the river, leading to increased sedimentation and
turbidity. The altered river course can disrupt aquatic ecosystems and impact downstream water
users, as noted by Lindahl (2014), who highlighted the excessive excavation of riverbanks
leading to increased sedimentation and changes in river flow.

Figure 4.4 shows a barren landscape in an abandoned mining area, characterized by scattered
debris, minimal vegetation cover, and compacted soil. The photograph suggests a complete loss
of topsoil and a lack of conditions suitable for natural regeneration. This aligns with the findings
of D'Souza (2020), who emphasized the severe environmental degradation, including land
degradation, deforestation, and biodiversity loss, resulting from artisanal and small-scale

mining in Africa.”
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Figure 4.5: Large Excavation Pit with Standing Water (Location: Mali village)
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Figure 4.5 shows a large excavation pit filled with standing water, likely rainwater mixed with
sediment and potential contaminants. The photograph highlights the scale of disturbance caused
by mining activities and the lack of rehabilitation efforts to restore the landscape. The standing
water can serve as a breeding ground for mosquitoes and other disease vectors, posing a risk to
public health, as discussed by Esdaile & Chalker (2018), who highlighted the health risks

associated with mercury and cyanide contamination in alluvial gold concentration.

Figure 4.6: Deforested Area with Mining Pits in the Distance (Location: Bouli)
Figure 4.6 shows a deforested area with mining pits visible in the distance, illustrating the
encroachment of mining activities into previously forested regions. The photograph highlights
the direct link between gold mining and deforestation, which can have significant impacts on
biodiversity, carbon sequestration, and climate change, as noted by Sonwa et al. (2020), who
documented extensive deforestation due to gold mining, agriculture, and logging in the Betaré-
Oya region.

Figure 4.7 shows turbid water flowing through a stream near an active mining site. The
photograph provides visual evidence of the direct impact of mining activities on water quality,

with sediment runoff contributing to increased turbidity and potential contamination. This
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aligns with the findings of Chica & Walker (2020), who reported increased turbidity and

elevated concentrations of heavy metals in surface water samples from mining-affected rivers."

e

Figure 4.7: Turbid Water Flowing Through Mining-Affected Area (Location: Tributary
of River Mari)

Figure 4.8, a photograph taken in an active mining area at Ngengue, provides a stark illustration
of the severe soil erosion resulting from alluvial gold mining. The image reveals a deeply
incised soil profile, exposing distinct soil horizons and highlighting the removal of the fertile
topsoil layer. The vertical striations in the soil face indicate the presence of erosion gullies,
formed by the concentrated flow of surface water. The presence of scattered rocks and debris
further contributes to the instability of the landscape. This type of soil erosion can lead to the
loss of valuable nutrients, reduced water infiltration, and increased sedimentation in nearby
water bodies, as discussed by Mandal et al. (2019), who emphasized the use of remote sensing-
derived indices to evaluate soil degradation and track soil erosion."

The limited vegetation cover in the upper portion of the image suggests that natural regeneration
is hindered by the degraded soil conditions. The presence of a small amount of vegetation is not
enough to prevent further erosion. The photograph highlights the long-term consequences of
mining activities on soil health and the challenges associated with restoring degraded
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landscapes, as emphasized by Smith & Watson (2017), who discussed the importance of soil
remediation and sustainable land-use planning in effective reclamation and restoration

strategies.

Figure 4.8: Exposed Soil Profile and Erosion Gullies (Location: Ngengue)

Interviews with local residents, miners, and community leaders further contextualized these
physical observations. Residents consistently reported a decline in agricultural productivity due
to soil degradation and water pollution. Miners acknowledged the environmental impacts of
their activities but cited economic necessity as the primary driver. Community leaders
expressed concerns about the long-term sustainability of mining and the need for effective
rehabilitation strategies. One resident stated, '‘Before the mining, we could grow anything here.
Now, the soil is dead, and the water is poisoned.’ This sentiment underscores the direct impact
of mining activities on local livelihoods and the urgent need for sustainable mining practices
and effective rehabilitation efforts.

To further contextualize the field observations and assess the spatial distribution and severity
of land degradation across the study area, high-resolution Google Earth Pro imagery from 2023
was analyzed. The imagery confirmed the presence of numerous abandoned mine sites, often

characterized by bare earth, altered drainage patterns, and a lack of vegetation cover. The
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imagery also revealed the expansion of active mining areas into previously forested regions,

highlighting the ongoing deforestation associated with the industry.
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Figure 4.9: Google Earth Pro Image - Linear Mining Pattern (Location: N 5°33'43.2", E
14°03'15.84"")

Figure 4.9 shows a Google Earth Pro image of a mining area characterized by a linear pattern
of disturbance. The image reveals a series of interconnected mining pits and access roads
extending through a previously forested area. The linear pattern suggests that mining activities
are following a specific geological feature or river channel, as alluvial gold deposits are often
concentrated along these features. The image also shows a clear contrast between the disturbed
mining area and the surrounding intact forest, highlighting the impact of mining on the
landscape. This pattern aligns with the findings of Kamga et al. (2017), who used Landsat
imagery to document the expansion of artisanal mining at the expense of vegetation cover in
the Betaré-Oya region.

Figure 4.10 shows a Google Earth Pro image of a mining area located directly adjacent to a
water body. The image reveals extensive soil disturbance and sedimentation along the shoreline,
indicating the direct impact of mining activities on water quality. The presence of bare earth
and altered drainage patterns suggests that the natural hydrological processes have been
disrupted. This proximity of mining activities to water bodies poses a significant threat to
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aquatic ecosystems and downstream water users, as discussed by Babut et al. (2019), who
reported elevated levels of mercury and other heavy metals in water samples from the Betaré-

Oya region.
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Figure 4.10: Google Earth Pro Image - Mining Area Adjacent to Water Body (Location:
N 5°30'54", E 13°54'54")
Figure 4.11 shows a Google Earth Pro image of a large-scale mining operation, characterized
by extensive deforestation, large excavation pits, and processing facilities. The image reveals
the scale of disturbance caused by mechanized mining activities and the significant impact on
the landscape. The presence of processing facilities suggests that the mining operation is
extracting and processing large quantities of ore, potentially leading to increased environmental
impacts. This aligns with the findings of D'Souza (2020), who emphasized the severe
environmental degradation, including land degradation, deforestation, and biodiversity loss,
resulting from artisanal and small-scale mining in Africa. Also, the image reveals a landscape
dominated by bare earth, with limited vegetation cover and altered drainage patterns. The
photograph highlights the direct link between gold mining and deforestation, which can have
significant impacts on biodiversity, carbon sequestration, and climate change, as noted by
Sonwa et al. (2020), who documented extensive deforestation due to gold mining, agriculture,

and logging in the Betaré-Oya region.

82



' E 14°03:54:72"

GooglejEarth
9 f e 30!t
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Figure 4.12: Google Earth Pro Image - Flooded Mining Area (Location: N 5°38'2.4", E
14°16'45.92")




Figure 4.12 shows a Google Earth Pro image of a mining area that appears to be flooded. The
image reveals a landscape dominated by water, with scattered patches of bare earth and limited
vegetation cover. The flooding may be due to the disruption of natural drainage in the mining
area and can lead to the mobilization of sediments and contaminants, further impacting water
quality and aquatic ecosystems, as discussed by Chica & Walker (2020), who reported increased
turbidity and elevated concentrations of heavy metals in surface water samples from mining-
affected rivers.

A comparison of Google Earth Pro imagery with the field photographs revealed a strong
correlation between areas identified as severely degraded in the field and areas exhibiting
extensive bare earth and altered topography in the satellite imagery. Furthermore, the imagery
allowed for a broader spatial assessment of land degradation patterns, identifying areas that
were inaccessible during the field visit. For example, Google Earth Pro imagery revealed a
network of interconnected mining pits and drainage channels that were not fully apparent from
ground-level observations, highlighting the cumulative impact of mining activities on the
landscape.

The use of Google Earth Pro also allowed for a preliminary assessment of rehabilitation efforts.
While some areas showed signs of natural revegetation, particularly along riverbanks, the
majority of abandoned mine sites remained largely unrehabilitated. This is evident in the field
photograph shown in Figure 4.4, which depicts a barren landscape with scattered debris and
minimal vegetation cover. This suggests a limited implementation of effective mine closure and
rehabilitation strategies, consistent with the findings of Kouamé et al. (2022), who noted the
lack of proper rehabilitation strategies in abandoned mining sites in the region.

4.1.2 Satellite Image Analysis

The extent of land degradation was analyzed using remote sensing techniques, including Bare
Soil Index (BSI) and Normalized Difference Moisture Index (NDMI).

Bare Soil index (BSI)

The BSI maps (Figures 4.14, 4.15, and 4.16) illustrate the spatial distribution of bare soil across
the Betaré-Oya region for the years 2021, 2023, and 2024. In 2021, the BSI map shows a
relatively low proportion of bare soil, with most areas classified as dense vegetation, sparse
vegetation, or dry grass. However, by 2023, a noticeable increase in bare soil is evident,
particularly in areas near active and abandoned mining sites. This trend continues in 2024, with

further expansion of bare soil areas and a corresponding decrease in vegetation cover. The
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spatial patterns of BSI change appear to be strongly correlated with the locations of mining

activities, suggesting a direct link between mining and land degradation.
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Figure 4.14: BSI for 2021
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Figure 4.15: BSI for 2023
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Figure 4.16: BSI for 2024
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Table 4.1: Table Statistics for BSI

Index Class Name Area (hectares) Percentage (%)
Dense Vegetation 283285.26 25.21
Sparse Vegetation 307170.9 27.34
BSI 2021 Dry grass 317425.64 28.25
Bare Soil 215701.32 19.20
Dense Vegetation 245231.05 21.83
Sparse Vegetation 330714.56 29.43
BSI 2023
Dry grass 261889.88 23.31
Bare Soil 285747.14 25.43
Dense Vegetation 172727.72 15.37
Sparse Vegetation 268090.67 23.86
BSI 2024
Dry grass 253227.35 22.54
Bare Soil 429539.52 38.23
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Figure 4.17: BSI trend from 2021 to 2024

Bare Soil

The BSI statistics (Table 4.1) provide a quantitative assessment of bare soil changes. The area
of bare soil increased from 19.20% in 2021 to 38.23% in 2024, representing a significant
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increase in land degradation. Conversely, the area of dense vegetation decreased from 25.21%
in 2021 to 15.37% in 2024, indicating a substantial loss of vegetation cover. The areas classified
as sparse vegetation and dry grass also showed fluctuations, suggesting a dynamic response of
vegetation to mining-related disturbances. The BSI trend from 2021 to 2024 (Figure 4.17)
visually summarizes the changes in bare soil extent over time. The graph shows a consistent
increase in the percentage of bare soil and a decrease in the percentage of dense vegetation.
This trend suggests that mining activities are having a negative impact on land cover in the
Betaré-Oya region.
e Normalized Difference Moisture Index (NDMI)

The NDMI maps (Figures 4.18, 4.19, and 4.20) illustrate the spatial distribution of vegetation
moisture content across the Betaré-Oya region for the years 2021, 2023, and 2024. In 2021, the
maps show a relatively high proportion of high vegetation moisture, particularly in the northern
and western parts of the study area. However, by 2023, a noticeable increase in Moisture-
deficient area/Bare soil is evident, with a corresponding increase in areas classified as low
vegetation moisture and moderate vegetation moisture. This trend continues in 2024, with
further shrinkage of low and moderate vegetation moisture areas and expansion of degraded
areas (moisture deficient areas/bare soil). The NDMI statistics (Table 4.2) provide a quantitative
assessment of vegetation moisture changes. Moisture-deficient areas (bare soil) remained nearly
the same from 16.54% (2021) to 16.56% (2023). Low vegetation moisture decreased from
30.38% (2021) to 29.57% (2023). Moderate and high moisture vegetation increased slightly in
2023. The area of moisture-deficient /bare soil greatly increases from16.56% in 2023 to 24.68%
in 2024, indicating a substantial increase mining activities. Conversely there is an increased in
high moisture from 25.34% in 2023 to 28.85% in 2024 but not as high as moisture deficient
areas, this increase may be due to mining disturb soil structure reducing infiltration while
promoting water logging, open pits and depressions created by abandoned mined sites that
collect and retained water.

The NDMI trend from 2021 to 2024 (Figure 4.20) visually summarizes the changes in
vegetation moisture content over time. The graph shows a consistent decline in the percentage
of low and moderate vegetation moisture and an increase in the percentage of moisture-deficient
areas/bare soil. This trend suggests that mining activities are having a negative impact on

vegetation moisture in the Betaré-Oya region.
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Figure 4.18: NDMI for 2021
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Figure 4.19: NDMI for 2023

91



13°0'0"E 13°30°0"E 14°0'0"E
L

14°30°0"E
L

NDMI 2024

N

0 15 30 60 Km
I 1 | | |

Legend

|:| Betare-Oya

NDMI Values

- Moisture-deficient area/Bare soil (<0.0)
[ | Low vegetation moisture(0.0 to 0.1)

[ | Moderate Vegetation moisture(0.1to 0.2)
- High Vegetation moisture(0.2to 1)

T T T T T
4'30'0"N 5°00"N 5'30'0"N 6°0'0"N 6°30'0"N

T
4°0'0"N

Figure 4.19: NDMI for 2024
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Table 4.2: Table Statistics for NDMI

Index Class Name Area (hectares) Percentage (%)
Moisture-deficient area/Bare soil 185862.18 16.54
Low Vegetation Moisture 341330 30.38
I\;SZI Moderate Vegetation Moisture 317577.88 28.26
High Vegetation Moisture 278813.06 24.81
Moisture-deficient area/Bare soil 186046.40 16.56
NDMI Low Vegetation Moisture 332242.87 29.57
2023 Moderate Vegetation Moisture 320538.28 28.53
High Vegetation Moisture 284755.08 25.34
Moisture-deficient area/Bare soil 277331.19 24.68
NDMI Low Vegetation Moisture 294139.89 26.18
2024 Moderate Vegetation Moisture 227989.99 20.29
High Vegetation Moisture 324124.19 28.85
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Figure 4.20: NDMI trend from 2021 to 2024
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The BSI and NDMI maps and statistics reveal a clear trend of increasing bare soil extent and
decreasing vegetation moisture content in the Betaré-Oya region from 2021 to 2024. The spatial
patterns of BSI and NDMI change are strongly correlated with the locations of mining activities,
suggesting a direct link between mining and land degradation.

The observed increase in bare soil extent and decrease in vegetation moisture content are likely
due to a combination of factors associated with mining activities, including deforestation,
topsoil removal, soil compaction, and soil contamination. Deforestation directly reduces
vegetation cover, while topsoil removal and soil compaction hinder natural regeneration. Soil
contamination from heavy metals and other pollutants can also inhibit plant growth and reduce
vegetation moisture content.

BSI and NDMI are useful tools for assessing land degradation and vegetation moisture, but they
have some limitations. BSI is sensitive to soil type and moisture content, which can affect the
accuracy of the results. NDMI is sensitive to atmospheric conditions and vegetation type, which
can also affect the accuracy of the results.

The findings are consistent with previous studies that have used BSI and NDMI to assess land
degradation and vegetation moisture in mining-affected areas. For example, Chandrasekar et al.
(2016) found that BSI values increased in areas affected by mining activities, indicating an
increase in land degradation. Chen et al. (2021) found that NDMI values decreased in areas
affected by mining activities, indicating a decrease in vegetation moisture.

4.2 Vegetation Health Assessment (Normalized Difference Vegetation Index)

The NDVI maps (Figures 4.21, 4.22, and 4.23) provide a visual representation of vegetation
health across the Betaré-Oya region. In 2021, the maps show a relatively high proportion of
dense vegetation, particularly in the northern and western parts of the study area. However, by
2023, a noticeable decline in dense vegetation is evident, with a corresponding increase in areas
classified as sparse vegetation and bare soil. This trend continues in 2024, with further
fragmentation of dense vegetation patches and expansion of degraded areas. The NDVI
statistics (Table 4.3) provide a quantitative assessment of vegetation health changes. The area
of dense vegetation 46.13% to 42.34% in 2024, representing a significant loss of vegetation
cover. Conversely, the area of bare soil increased from 1.82% in 2021 to 12.55% in 2024,
indicating a substantial increase in land degradation. The areas classified as sparse vegetation
and moderate vegetation also showed fluctuations, suggesting a dynamic response of vegetation

to mining-related disturbances.
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Figure 4.21: NDVI for 2021
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Figure 4.23: NDVI for 2023
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Figure 4.24: NDVI for 2024
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Table 4.3: Table Statistics for NDVI

Index Class Name Area (hectares) Percentage (%)
Water 18130.72 1.61
Bare soil 20446.78 1.82
NDVI Sparse vegetation 271631.71 24.18
2021 Moderate Vegetation 295101.27 26.26
Dense Vegetation 518272.64 46.13
Water 17737.16 1.58
Bare soil 76917.32 6.85
NDVI i
2023 Sparse vegetation 293233.83 26.10
Moderate Vegetation 307388.95 27.36
Dense Vegetation 428295.24 38.12
Water 16025.19 1.43
Bare soil 140979.14 12.55
NDVI i
2024 Sparse vegetation 248247.3 22.09
Moderate Vegetation 242560.41 21.59
Dense Vegetation 475773.22 42.34
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Figure 4.25: NDVI trend from 2021 to 2024

Vegetation
m 2021 m2023 m2024




The NDVI trend from 2021 to 2024 (Figure 4.25) visually summarizes the changes in vegetation
health over time. The graph shows a consistent increase in the percentage of bare soil.

The NDVI maps and statistics reveal a clear trend of declining vegetation health in the Betaré-
Oya region from 2021 to 2024. The decrease in dense vegetation and the increase in bare soil
indicate that mining activities are having a significant impact on vegetation cover. The
fragmentation of dense vegetation patches suggests that mining activities are disrupting the
connectivity of ecosystems and reducing the resilience of vegetation to disturbances. The
observed decline in vegetation health is likely due to a combination of factors associated with
mining activities, including deforestation, topsoil removal, soil compaction, and soil
contamination. Deforestation directly reduces vegetation cover, while topsoil removal and soil
compaction hinder natural regeneration. Soil contamination from heavy metals and other
pollutants can also inhibit plant growth and survival. The findings are consistent with previous
studies that have used NDVI to assess vegetation health in mining-affected areas. For example,
Pettorelli et al. (2005) found that NDV I values decreased in areas affected by mining activities,
indicating a decline in vegetation health. The study also supports the findings of Chen et al.
(2021), who found that NDV1 values were negatively correlated with soil degradation in mining

areas.

4.3: Water Quality Assessment

e Normalized Difference Water index

The NDWI maps (Figures 4.26, 4.27, and 4.28) show the spatial distribution of water bodies
and floodplains in the Betaré-Oya region. In 2021, the maps show a relatively high proportion
of water bodies, particularly in the central and southern parts of the study area. However, by
2023, a noticeable decrease in water bodies is evident, with a corresponding increase in areas
classified as floodplains/mine pit water. This trend continues in 2024, with further shrinkage of
water bodies and expansion of floodplains/mine pit water.

The NDWI statistics (Table 4.4) provide a quantitative assessment of water body changes. The
area of water bodies decreased from 1.71% in 2021 to 1.49% in 2024, representing a significant
loss of water resources. Conversely, the area of floodplains/mine pit water increased from
1.41% in 2021 to 17.52% in 2024, indicating a substantial increase in areas affected by mining-

related water disturbances.
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Figure 4.26: NDWI for 2021
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Figure 4.27: NDWI for 2023
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Figure 4.28: NDWI for 2024
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Table 4.4: Table Statistics for NDW!I

Index Class Name Area (hectares) Percentage (%)
Built-Up/Dense Vegetation 547451.35 48.72
Sparse vegetation/Dry Soil 541123.69 48.16
ZSZZI Flood Plains/Mine Pit water 15831.29 1.41
Water Bodies 19176.79 1.71
Built-Up/Dense Vegetation 538490.85 47.93
NDWI Sparse vegetation/Dry Soil 550625.17 49.01
2023 Flood Plains/Mine Pit water 17026.17 1.52
Water Bodies 17470.44 1.55
Built-Up/Dense Vegetation 492868.05 43.87
NDWI Sparse vegetation/Dry Soil 417129.09 37.12
2024 Flood Plains/Mine Pit water 196795.78 17.52
Water Bodies 16792.34 1.49
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Figure 4.29: NDWI trend from 2021 to 2024
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e Turbidity Index (TI)

The T1 maps (Figures 4.30, 4.31, and 4.32) show the spatial distribution of turbidity in the
Betaré-Oya region. In 2021, the maps show a relatively low proportion of high turbidity,
with most areas classified as low turbidity. However, by 2023, a noticeable increase in low
turbidity is evident (99.59%). However in 2024, there is slight decrease for low turbidity
(88.09%).
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Figure 4.30: Tl for 2021

104



13°0'0"E 13°30°0"E 14°0'0"E
L L L

14°30°0"E
L

T1 2023

N

0 15 30 60 Km
I | l | |

Legend

|:| Betare-Oya
Turbidity Index Values
B o Turbidity (<0)

[ | Low Turbidity (0 to 0.1)
I High Turbidity(0.1 to 1)

T T T T T
4°300"N 5°0'0"N 5'300"N 6°00"N 6°300"N

T
4'00"N

Figure 4.31: T1 for 2023
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Figure 4.32: T1 for 2024
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Table 4.5: Table Statistics for Tl

Index Class Name Area (hectares) Percentage (%)

No Turbidity 475020 42.28

T1 2021 Low Turbidity 648284.8 57.70
High Turbidity 278.28 0.02

No Turbidity 3928.44 0.35

T12023 Low Turbidity 1118957.88 99.59
High Turbidity 696.31 0.06

No Turbidity 131318.88 11.69

T1 2024 Low Turbidity 989816.77 88.09
High Turbidity 2449.61 0.22
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Figure 4.33: Tl from 2021 to 2024
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e Suspended Sediment Concentration (SSC)

The SSC maps (Figures 4.34, 4.35, and 4.36) show the spatial distribution of suspended
sediment concentration in the Betaré-Oya region. In 2021, the maps show a relatively low
proportion of very high sediment (1.81%), with most areas classified as moderate sediment
load. However, by 2023, there was no change for very high sediment load (1.81%). This

trend continues in 2024, with further expansion of very high sediment load (20.50%).
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Figure 4.34: SSC for 2021
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Figure 4.35: SSC for 2023
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Figure 4.36: SSC for 2024

110



Table 4.6: Table Statistics for SSC

N
o

=
o

Index Class Name Area (hectares) Percentage (%)
Low sediment load 38443.33 3.42
Moderate sediment load 680699.3 60.58
;)S; High Sediment load 384064.11 34.18
Very high sediment load 20376.38 1.81
Low sediment load 14447.12 1.29
SSC Moderate sediment load 692314.65 61.62
2023 High Sediment load 396471.67 35.29
Very high sediment load 20379.19 1.81
Low sediment load 3982.22 0.35
SSC Moderate sediment load 373361.53 33.23
2024 High Sediment load 515956.15 45.92
Very high sediment load 230285.36 20.50
SSC
70
60.5861.62
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50 45.92
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Figure 4.37: SSC from 2021 to 2024
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The trends in NDWI, TI, and SSC values from 2021 to 2024 (Figures 4.29, 4.33, and 4.37)
visually summarize the changes in water quality over time. The graphs show a decrease in water
bodies and an increase in floodplains/mine pit water, low turbidity, and very high sediment
load, indicating that mining activities are having a negative impact on water quality in the
Betaré-Oya region.

NDWI, TI, and SSC maps and statistics reveal a clear trend of declining water quality in the
Betaré-Oya region from 2021 to 2024. The decrease in water bodies and the increase in
floodplains/mine pit water, turbidity, and sediment load indicate that mining activities are
having a significant impact on water resources.

The observed decline in water quality is likely due to a combination of factors associated with
mining activities, including sediment runoff, chemical contamination, and altered drainage
patterns. The excavation of soil and the use of mercury and cyanide in gold extraction contribute
to the contamination of water resources.

The findings are consistent with previous studies that have used NDWI, TI, and SSC to assess
water quality in mining-affected areas. Chen et al. (2020) found that NDW!1 values decreased
and Tl and SSC values increased in areas affected by mining activities, indicating a decline in
water quality. The study also supports the findings of Kumar et al. (2019), who found that
mining activities were associated with increased levels of heavy metals in water resources.
4.4. Land Used/Land Cover Monitoring and Evaluation (LULC)

LULC maps (Figures 4.38, 4.39, and 4.40) provide a visual representation of land use and land
cover across the Betaré-Oya region. In 2021, the maps show a relatively high proportion of
dense vegetation, particularly in the northern and western parts of the study area. However, by
2023, a noticeable decrease in dense vegetation is evident, with a corresponding increase in
areas classified as bare land and mine site. This trend continues in 2024, with further
fragmentation of dense vegetation patches and expansion of degraded areas.

The LULC statistics (Table 4.7) provide a quantitative assessment of LULC changes. The area
of dense vegetation decreased from 38.27% in 2021 to 30.69% in 2024, representing a
significant loss of vegetation cover. Conversely, the area of bare land increased from 32.22%
in 2021 to 45.48% in 2024, indicating a substantial increase in land degradation. The area of
mine site also increased from 2.69% in 2021 to 4.76% in 2024, further confirming the expansion

of mining activities.
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Figure 4.38: LULC for 2021
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Figure 4.39: LULC for 2023
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Table 4.7: Table Statistics for LULC
Index Class Name Area (hectares) Percentage (%0)

Dense Vegetation 430001.36 38.27
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LULC Sparse Vegetation 240000.67 21.36
2021 Water 20019.3 1.78
Settlement 41378.37 3.68
Bare Land 362011.39 32.22
Mine Site 30202.77 2.69
Dense Vegetation 410022.55 36.49
Sparse Vegetation 220067.55 19.59
LULC Water 23871.62 2.12
2023 Settlement 45058.37 4.01
Bare Land 389065.83 34.63
Mine Site 35545.71 3.16
Dense Vegetation 344844.74 30.69
Sparse Vegetation 151026.71 13.44
LULC Water 15046.81 1.34
2024 Settlement 48103.41 4.28
Bare Land 511034.88 45.48
Mine Site 53528.71 4.76
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Figure 4.41: LULC from 2021 to 2024
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LULC Change 2021 - 2023
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Figure 4.42: LULC Change detection from 2021 to 2023
Table 4.8: LULC change detection table statistics from 2021 to 2023
LULC LULC 2023 Change Detection Area Percentage
2021 Category (hectares) (%)

Dense

Vegetation

Dense
Vegetation

Dense Vegetation to
Dense Vegetation

264946.11

23.58
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Dense Sparse Dense Vegetation to 89388.71 7.96
Vegetation | vegetation Sparse vegetation
Sparse Sparse Sparse Vegetation to 132434.81 11.79
Vegetation | Vegetation Sparse Vegetation
Bare land | Settlement Bare land to Settlement 7552.7 0.67
Bare land Sparse Bare land to Sparse 366.63 0.03
Vegetation Vegetation
Mine site Dense Mine site to Dense 10.08 0.00
Vegetation Vegetation
Mine site Sparse Mine site to Sparse 3444.49 0.31
Vegetation Vegetation
Bare land Bare land Bare land to Bare land 307752.74 27.39
Mine site | Settlement Mine site to Settlement 8451.47 0.75
Sparse Dense Sparse Vegetation to 15826.11 141
Vegetation | Vegetation Dense Vegetation
Bare land Dense Bare land to Dense 912.11 0.08
Vegetation Vegetation
Bare land Mine site Bare land to Mine site 12395.36 1.10
Sparse Bare land | Sparse Vegetation to Bare 58369.24 5.20
Vegetation land
Sparse Settlement Sparse Vegetation to 23061.19 2.05
Vegetation Settlement
Mine site Bare land Mine site to Bare land 7318.35 0.65
Mine site Mine site Mine site to Mine site 8058.55 0.72
Dense Settlement Dense Vegetation to 3440.8 0.31
Vegetation Settlement
Sparse Mine site Sparse Vegetation to 31580.6 2.81
Vegetation Mine site
Dense Bare land | Dense Vegetation to Bare 50420.79 4.49
Vegetation land
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Dense Mine site Dense Vegetation to 51032.81 4.54
Vegetation Mine site
Settlement Dense Settlement to Dense 209.57 0.02
Vegetation Vegetation
Settlement Sparse Settlement to Sparse 920.77 0.08
Vegetation Vegetation
Settlement | Settlement | Settlement to Settlement 2861.83 0.25
Settlement | Bare land Settlement to Bare land 185.81 0.02
Settlement Mine site Settlement to Mine site 5.56 0.00
Water Mine site Water to Mine site 2245.68 0.20
Water Water Water to Water 17746.19 1.58
Mine site Water Mine site to Water 13417.81 1.19
Water Settlement Water to Settlement 9.17 0.00
Dense Water Dense Vegetation to 0.82 0.00
Vegetation Water
Water Bare land Water to Bare land 5.34 0.00
Water Sparse Water to Sparse 1.32 0.00
Vegetation Vegetation
Sparse Water Sparse Vegetation to 1.22 0.00
Vegetation Water
Bare land Water Bare land to Water 9150.32 0.81
Settlement Water Settlement to Water 3.94 0.00
Water Dense Water to Dense 0.26 0.00
Vegetation Vegetation
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LULC Changes (2021 - 2023)
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Figure 4.43: LULC Change detection histogram from 2021 to 2023
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LULC Change 2021 - 2024
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Figure 4.44: LULC Change detection from 2021 to 2024
Table 4.9: LULC change detection table statistics from 2021 to 2024

LULC 2021 | LULC 2024 | Change Detection Area (Hectares)
Category

Percenta
ge (%)

Dense Dense Dense vegetation to 240467.49

vegetation Vegetation Dense Vegetation

21.40
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Sparse Dense Sparse vegetation to 2115.56 0.19

vegetation Vegetation Dense Vegetation

Sparse Sparse Sparse vegetation to 42851.73 3.81

vegetation vegetation Sparse vegetation

Bare land Bare land Bare land to Bare land 367991.46 32.75

Mine site Bare land Mine site to Bare land 2567.37 0.23

Sparse Bare land Sparse vegetation to 117507.74 10.46

vegetation Bare land

Bare land Sparse Bare land to Sparse 5112.37 0.46
vegetation vegetation

Bare land Settlement Bare land to Settlement | 7958.72 0.71

Dense Sparse Dense vegetation to 37054.61 3.30

vegetation vegetation Sparse vegetation

Mine site Dense Mine site to Dense 2266.81 0.20
Vegetation Vegetation

Bare land Dense Bare land to Dense 1580.31 0.14
Vegetation Vegetation

Mine site Sparse Mine site to Sparse 1706.92 0.15
vegetation vegetation

Mine site Mine site Mine site to Mine site 9260.55 0.82

Sparse Mine site Sparse vegetation to 94481.34 8.41

vegetation Mine site

Sparse Settlement Sparse vegetation to 19315.93 1.72

vegetation Settlement

Bare land Mine site Bare land to Mine site 15358.11 1.37

Dense Bare land Dense Vegetation to 12240.12 1.09

Vegetation Bare land

Mine site Settlement Mine site to Settlement | 5733.08 0.51

Dense Settlement Dense Vegetation to 3463.52 0.31

Vegetation Settlement
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Dense Mine site Dense Vegetation to 74009.33 6.59

Vegetation Mine site

Settlement Dense Settlement to Dense 369.45 0.03
Vegetation Vegetation

Settlement Bare land Settlement to Bare land | 897.95 0.08

Settlement Mine site Settlement to Mine site | 802.14 0.07

Settlement Settlement Settlement to Settlement | 10147.86 0.90

Settlement Sparse Settlement to Sparse 198.95 0.02
vegetation vegetation

Mine site Water Mine site to Water 64.07 0.01

Dense Water Dense Vegetation to 7 0.00

Vegetation Water

Settlement Water Settlement to Water 1.13 0.00

Sparse Water Sparse vegetation to 4,53 0.00

vegetation Water

Water Mine site Water to Mine site 11615.89 1.03

Bare land Water Bare land to Water 21111.74 1.88

Water Water Water to Water 14968.83 1.33

Water Bare land Water to Bare land 116.04 0.01

Water Sparse Water to Sparse 100.35 0.01
vegetation vegetation

Water Settlement Water to Settlement 82.67 0.01

Water Dense Water to Dense 324 0.00
Vegetation Vegetation
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LULC Changes (2021 - 2024)
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Figure 4.45: LULC Change detection histogram from 2021 to 2024
The LULC change detection maps (Figures 4.42 and 4.44) show the areas that have changed
from one LULC class to another. The change detection analysis reveals that the most significant
changes are from dense vegetation to bare land and mine site, indicating that mining activities

are driving deforestation and land degradation.
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LULC change detection histogram (Figures 4.43 and 4.45) provides a quantitative summary of
the LULC changes. The histogram confirms that the most significant changes are from dense
vegetation to bare land and mine site.

The LULC maps, statistics, and change detection analysis reveal a clear trend of changing
LULC in the Betaré-Oya region from 2021 to 2024. The decrease in dense vegetation and the
increase in bare land and mine site indicate that mining activities are having a significant
impact on LULC.

The observed changes in LULC are directly related to mining activities. The clearing of forests
to access alluvial gold deposits results in a decrease in dense vegetation and an increase in bare
land and mine site. The expansion of mining activities also leads to an increase in settlement
areas, as people migrate to the region in search of employment opportunities.

The findings are consistent with previous studies that have used LULC classification to assess
environmental changes in mining-affected areas. For example, Kamga et al. (2017) found that
mining activities were driving deforestation and land degradation in the Betaré-Oya region.
The study also supports the findings of Singh et al. (2023), who found that mining activities
were associated with increased levels of bare land and settlement areas.

The observed changes in LULC have significant implications for sustainable development in
the Betaré-Oya region. The loss of dense vegetation reduces the capacity of ecosystems to
provide essential services, such as carbon sequestration, water regulation, and soil stabilization.
The increase in bare land and mine site contributes to land degradation and reduces agricultural
productivity. The expansion of settlement areas can lead to increased pressure on natural
resources and social conflicts.

4.5 Proposed Rehabilitation Strategies

The increase in bare soil extent and the decrease in vegetation moisture content have significant
implications for ecosystem services in the Betaré-Oya region. Bare soil is more susceptible to
erosion, which can lead to sedimentation of water bodies and loss of soil fertility. Reduced
vegetation moisture content can lead to increased fire risk and reduced carbon sequestration.
The decline in vegetation health has significant implications for ecosystem services in the
Betaré-Oya region. Vegetation plays a crucial role in carbon sequestration, water regulation,
soil stabilization, and habitat provision. The loss of vegetation cover reduces the capacity of
ecosystems to provide these services, potentially leading to further environmental degradation

and economic losses.
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The decline in water quality has significant implications for human health and ecosystems in

the Betaré-Oya region. Contaminated water resources can pose a risk to human health through

drinking water consumption and exposure to contaminated water during recreational activities.

The increased turbidity and sediment load can also harm aquatic ecosystems by reducing light

penetration and smothering aquatic habitats.

Based on the remote sensing analysis, field observations, and literature review, the following

rehabilitation strategies are proposed for the alluvial gold mining-affected areas in Betaré-Oya.

Prioritization of Rehabilitation Areas

Prioritize areas with high BSI values, low NDMI and NDVI values, high Tl and SSC
values, and significant changes in LULC from dense vegetation to bare land or mine
site.

Consider the proximity of mining sites to water bodies and settlements when prioritizing

rehabilitation areas.

Soil Stabilization and Erosion Control

Implement soil stabilization measures to reduce soil erosion and sedimentation.
Construct terraces on slopes to reduce the slope length and slow down water runoff.
Plow along the contour lines of the land to create ridges that trap water and reduce soil
erosion.

Plant native grasses, shrubs, and trees to provide ground cover and stabilize the soil.
Apply organic mulch to the soil surface to reduce erosion and retain moisture.

Use geotextiles to stabilize slopes and prevent soil erosion.

Reforestation and Revegetation

Reforest degraded areas with native tree species to restore vegetation cover and improve
soil health.

Select tree species that are adapted to the local climate and soil conditions and that
provide valuable ecosystem services, such as carbon sequestration and habitat provision.
Use a mix of tree species to increase biodiversity and resilience to disturbances.
Implement soil preparation techniques, such as adding organic matter and fertilizer, to
improve soil fertility and promote plant growth.

Protect newly planted trees from grazing and fire.
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Water Quality Improvement

Implement water treatment technologies to remove pollutants from contaminated water
resources.

Construct artificial wetlands to filter pollutants from water and provide habitat for
wildlife.

Use plants and microorganisms to remove pollutants from water and soil.

Construct sedimentation basins to trap sediment and reduce turbidity.

Use chemical treatment to remove heavy metals and other pollutants from water.

Mine Pit Rehabilitation

Rehabilitate abandoned mine pits to reduce safety hazards and improve water quality.
Backfill mine pits with soil and rock to create a more stable and level surface.

Grade the surface of mine pits to improve drainage and reduce erosion.

Plant native vegetation on the surface of mine pits to stabilize the soil and provide
habitat for wildlife.

Treat the water in mine pits to remove pollutants and improve water quality.

Community Engagement and Alternative Livelihoods

Engage local communities in the planning and implementation of rehabilitation efforts.
Provide training and employment opportunities for local residents in rehabilitation
activities.

Promote sustainable agriculture, ecotourism, and other alternative livelihood
opportunities to reduce dependence on mining.

Educate local communities about the environmental impacts of mining and the

importance of sustainable mining practices.

Monitoring and Evaluation

Implement a long-term monitoring program to track the progress of rehabilitation
efforts.
Adjust rehabilitation strategies as needed based on monitoring results.

Engage local communities in the monitoring and evaluation process.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION
5.1 Conclusion
This study provides a comprehensive assessment of the environmental impacts of alluvial gold
mining in the Betaré-Oya region of Cameroon from 2021 to 2025. The spatiotemporal analysis
were performed from the year 2021 to 2024, while field observation and ground truthing was
carried out in the early months of 2025 (January to March). The results reveal significant land
degradation, declining vegetation health, deteriorating water quality, and changing land
use/land cover patterns due to mining activities.
Field observations and Google Earth Pro analysis revealed deforestation of the original forest
cover lost in active mining areas. Soil erosion was widespread, with topsoil loss in active mining
zones. Abandoned mining pits filled with stagnant water were a common sight, posing a risk to
public health and aquatic ecosystems.
Satellite image analysis using BSI, NDMI, NDVI, NDW!I, TI, and SSC confirmed the trends
observed in the field and Google Earth Pro analysis. The BSI results showed an increase in bare
soil from 2021 to 2024, indicating a significant increase in land degradation. The NDMI results
showed a decrease in vegetation moisture over the years, indicating a decline in vegetation
health. The NDVI results showed a decrease in vegetation, further confirming the decline in
vegetation health. The NDWI results indicated loss of water resources. The TI results showed
an average increase in turbidity over the years while SSC showed an increase in sediment load,
confirming the decline in water quality.
LULC classification and change detection analysis revealed that mining activities are driving
deforestation and land degradation, with significant changes from dense vegetation to bare land
and mine site over the years.
The different analyses (BSI, NDMI, NDVI, NDWI, TI, SSC, and LULC) complement each
other to provide a comprehensive understanding of the environmental impacts of mining. The
results show that mining activities are having a cascading effect on the environment, leading to
land degradation, declining vegetation health, deteriorating water quality, and changing land
use/land cover patterns.
This study contributes to scientific knowledge by providing a comprehensive assessment of the
environmental impacts of alluvial gold mining in the Betaré-Oya region. The study also

demonstrates the value of remote sensing for monitoring environmental changes in mining-
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affected areas. The findings provide valuable information for policymakers, regulatory
agencies, and environmental managers to design and enforce sustainable mining policies and
develop effective mine closure and rehabilitation plans.

5.2 Recommendation

Implement stricter regulations on mining activities to minimize environmental impacts. This
includes regulations on deforestation, topsoil removal, chemical use, and waste disposal. The
regulations should be enforced through regular inspections and penalties for violations.
Promote sustainable mining practices, such as the use of mercury-free gold extraction methods
and the implementation of best management practices for soil erosion and sediment control.
This can be achieved through education and training programs for miners and financial
incentives for adopting sustainable practices.

Develop and implement comprehensive mine closure and rehabilitation plans that are tailored
to the specific environmental conditions of the Betaré-Oya region. The plans should include
specific goals, timelines, and monitoring protocols.

Enforce existing environmental regulations and hold mining companies accountable for their
environmental impacts. This includes requiring mining companies to provide financial
guarantees for rehabilitation costs and to pay for the cleanup of contaminated sites.

Provide financial incentives for mining companies to implement sustainable mining practices
and rehabilitate abandoned mine sites. This can be achieved through tax breaks, subsidies, and

grants.
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APPENDICES
Appendix A: Graphical User interface (GUI) of the software used
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Figure A3: GUI of ENVI
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